Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy B < 1 vì 102011 + 1 < 102012 + 1. Áp dụng tính chất nếu \(\frac{a}{b}<1\) thì \(\frac{a}{b}<\frac{a+m}{b+m}\) ta có :
\(B=\frac{10^{2011}+1}{10^{2012}+1}<\frac{\left(10^{2011}+1\right)+9}{\left(10^{2012}+1\right)+9}=\frac{10^{2011}+10}{10^{2012}+10}=\frac{10.\left(10^{2010}+1\right)}{10.\left(10^{2011}+1\right)}=\frac{10^{2010}+1}{10^{2011}+1}=A\)
Vậy A > B
2)không.Vì hiệu của 2 số là 1 số lẻ nên số trừ phải là số lẻ hoặc chẵn nhưng trong trường hợp này số trừ lẻ thì số bị trừ chẵn mà SBT là SNT nên SBT=2( vô lý vì SBT luôn >2014)
còn nếu số trừ chẵn thì số trừ =2 SBT=2015( là hợp số)
1)C=3^210
C=3^200*3^10
D=2^310=
D=2^300*2^10
Mà 3^200=(3^2)^100=9^100
2^300=(2^3)^100=8^100
nên 3^200>2^300
Mà 3^10>2^10
Nên 3^200*3^10>2^300*2^10
C>D
3)Gọi số số hạng là n
ta có
A=1-5+9-13+17-21+25-...
A=1+4+4+4...=2013(có n/2-1 số 4)
A=1+4*(n/2-1)=2013
A=1+2*n-4=2013
1+2*n=2017
2*n=2016
n=1008
số cuối là 4029(tui làm lụi đó hông bít có đúng hk)
Ta có:
Q=2010/2011+2012+2013+2011/2011+2012+2013+2012/2011+2012+2013
Mà 2010/2011+2012+2013<2010/2011
2011/2011+2012+2013<2011/2012
2012/2011+2012+2013<2012/2013
=>Q<P
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\cdot\frac{a}{2009}=\frac{b}{2011}=\frac{a-b}{2009-2011}=\frac{a-b}{-2}\)
\(\cdot\frac{b}{2011}=\frac{c}{2013}=\frac{b-c}{2011-2013}=\frac{b-c}{-2}\)
\(\cdot\frac{a}{2009}=\frac{c}{2013}=\frac{a-c}{2009-2013}=\frac{a-c}{4}\)
\(\Rightarrow\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{4}\left(=\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}\right)\)
\(\Rightarrow\)\(\Rightarrow\frac{a-b}{-2}.\frac{b-c}{-2}=\left(\frac{a-c}{4}\right)^2\)
\(\Rightarrow\frac{\left(a-c\right)^2}{4^2}=\frac{\left(a-b\right)\left(b-c\right)}{4}\)
\(\Rightarrow\frac{\left(a-c\right)^2}{4}=\left(a-c\right)\left(b-c\right)\)
Vậy \(\frac{\left(a-c\right)^2}{4}=\left(a-c\right)\left(b-c\right)\)
\(2A=2^{2015}-2^{2014}-...-2^2-2\)
\(2A-A=2^{2015}+1>2\)
Có : \(\frac{2011}{2012}=\frac{2012-1}{2012}=1-\frac{1}{2012}\)
Có : \(\frac{2012}{2013}=\frac{2013-1}{2013}=1-\frac{1}{2013}\)
Có : \(\frac{2013}{2011}=\frac{2011+2}{2011}=1+\frac{2}{2011}\)
Cộng vế với vế ta có : \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}=1-\frac{1}{2012}+1-\frac{1}{2013}+1+\frac{2}{2011}=1+1+1-\left(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}\right)=3-\left(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}\right)\)
Vì \(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}>0\) nên \(3-\left(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}\right)<3\)
Vậy \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}<3\)
Tìm chữ số tận cùng của số 57^2011
Xét 7^2011; ta có: 7^2011 = (7^4)^502.7^3 = 2401^502. 343
Suy ra chữ số tận cùng bằng 3
Vậy số 57^2011 có chữ số tận cùng là 3.
b) Tìm chữ số tận cùng của số 93^1999
Xét 3^1999; ta có: 31^999 = (3^4)^499. 3^3 = 81^499.27
Suy ra chữ số tận cùng bằng 7
Vậy số 3^1999 có chữ số tận cùng là 7.
Vì 20112011<20112012 =>20112011 +1<20112012 +1
=> 20112011+1/20112012+1 <1
=>B<1
=>B=20112011+1/20112012+1<20112011+1+2010/20112012+1+2010
=>B<20112011+2011/20112012+2011=20112010.2011+2011/20112011.2011+2011=2011.(20112010+1)/2011.(20112011+1)
=>B<20112010+1/20112011+1=A
=>B<A
Vậy B<A
Đặt nhân tử chung rồi so sánh ta được B>A
V~thánh!!!! Chịu m lun