Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh\(A=\frac{2^{2006}+7}{2^{2004}+7}\)và\(B=\frac{2^{2003}+1}{2^{2001}+1}\)
A A > B
B A = B
C A < B
a) \(15=\sqrt{225}\)
\(\sqrt{235}=\sqrt{235}\)
vi \(225< 235\)nen \(\sqrt{225}< \sqrt{235}\)
vay \(15< \sqrt{235}\)
Câu b)
Ta có \(\sqrt{7}< \sqrt{9}\Leftrightarrow\sqrt{7}< 3\)
\(\sqrt{15}< \sqrt{16}\Leftrightarrow\sqrt{15}< 4\)
Cộng theo vế: \(\sqrt{7}+\sqrt{15}< 3+4\) hay \(\sqrt{7}+\sqrt{15}< 7\)
Câu 1: Cho A.= \(\frac{7^{2018}+1}{7^{2019}+1}\)Và B=\(\frac{7^{2019}+1}{7^{2019}+1}\)
So sánh A và B
\(A=\frac{7^{2018}+1}{7^{2019}+1}\)
\(\Rightarrow7A=\frac{7^{2019}+7}{7^{2019}+1}=1+\frac{6}{7^{2019}+1}\)
\(B=\frac{7^{2019}+1}{7^{2020}+1}\)
\(\Rightarrow7B=\frac{7^{2020}+7}{7^{2020}+1}\)
\(\Rightarrow7B=1+\frac{6}{7^{2020}+1}\)
Vì 7 ^ 2019 < 7 ^ 2020 => 7 ^ 2019 + 1 < 7 ^ 2020 + 1
=> 6 / ( 7 ^ 2019 + 1 ) > 6 / ( 7 ^ 2020 + 1 )
=> 1 + 6 / ( 7 ^ 2019 + 1 ) > 1 + 6 / ( 7 ^ 2020 + 1 )
=> 7A > 7B
Vì A , B > 0
Nên A > B
Vì \(7^{2018}< 7^{2019}\)nên \(7^{2018}+1< 7^{2019}+1\)
\(\Rightarrow\frac{7^{2018}+1}{7^{2019}+1}< \frac{7^{2019}+1}{7^{2019}+1}\)
Hay A < B
Chúc bạn học tốt ! Nguyễn Thi An Na
\(a< b+c\text{ tính chất cạnh của t/giác:}\Rightarrow7^a< 7^{b+c}\Rightarrow\frac{7^a}{7^{b+c}}< 1\)
\(\text{Với: phân số }\frac{a}{b}\text{ có a;b nguyên dương bé hơn 1 thì:}\frac{a+n}{b+n}>\frac{a}{b}\left(\text{n nguyên dương}\right)\)
nên áp dụng cộng tử và mẫu của phân số M cho 2019 rồi ra N>M
a) \(A=7+7^2+...+7^{99}\)
\(7A=7^2+7^3+...+7^{100}\)
\(7A-A=7^2+7^3+...+7^{100}-7-7^2-...-7^{99}\)
\(6A=7^{100}-7\)
\(A=\frac{7^{100}-7}{6}\)
Mà 7100 > 7100 - 7 => A < \(\frac{7^{100}}{6}\)
b) \(A=7+7^2+...+7^{99}\)
\(A=\left(7+7^2+7^3\right)+...+\left(7^{97}+7^{98}+7^{99}\right)\)
\(A=\left(7+7^2+7^3\right)+...+7^{96}.\left(7+7^2+7^3\right)\)
\(A=399+...+7^{96}.399\)
\(A=399.\left(1+...+7^{96}\right)⋮19\left(đpcm\right)\)
a) Ta có: \(25^{15}=\left(5^2\right)^{15}=5^{30}\)
\(8^{10}.3^{30}=\left(2^3\right)^{10}.3^{30}\)\(=2^{30}.3^{30}=6^{30}\)
Vì \(5^{30}< 6^{30}\)nên \(25^{15}< 8^{10}.3^{30}\)
b) Ta có: \(\frac{4^{15}}{7^{30}}=\frac{\left(2^2\right)^{15}}{7^{30}}=\frac{2^{30}}{7^{30}}\)
\(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}=\frac{\left(2^3\right)^{10}.3^{30}}{7^{30}.\left(2^2\right)^{15}}=\frac{2^{30}.3^{30}}{7^{30}.2^{30}}=\frac{3^{30}}{7^{30}}\)
Vì \(2^{30}< 3^{30}\)nên \(\frac{2^{30}}{7^{30}}< \frac{3^{30}}{7^{30}}\)hay \(\frac{4^{15}}{7^{30}}< \frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)
_Học tốt_
a) Ta có: \(3\sqrt{2}=\sqrt{3^2.2}=\)\(\sqrt{18}\)
\(2\sqrt{3}=\sqrt{2^2.3}=\sqrt{12}\)
Do \(\sqrt{18}>\sqrt{12}=>3\sqrt{2}>2\sqrt{3}\)
b) tương tự trên
bạn thử bình phương 2 vế lên rùi so sánh
so sánh song thì kết luận