Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=\left(\sqrt{7-\sqrt{21}+4\sqrt{5}}\right)^2=7-\sqrt{21}+4\sqrt{5}\)
\(B=\left(\sqrt{5}-1\right)^2=6-2\sqrt{5}\)
\(\Rightarrow A-B=1-\sqrt{21}+6\sqrt{5}=\left(1+\sqrt{180}\right)-\sqrt{21}>0\)
\(\Rightarrow A>B\Rightarrow\sqrt{7-\sqrt{21}+4\sqrt{5}}>\sqrt{5}-1\)
2) \(C=\left(\sqrt{5}+\sqrt{10}+1\right)^2=5+10+1+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}\)
\(=26+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}>26+10>35=\left(\sqrt{35}\right)^2\)
Vậy \(\sqrt{5}+\sqrt{10}+1>\sqrt{35}\)
3) \(\left(\frac{15-2\sqrt{10}}{3}\right)^2=\frac{225-60\sqrt{10}+40}{9}=\frac{265-60\sqrt{10}}{9}=\frac{265}{9}-\frac{20\sqrt{10}}{3}< 15\)
Vậy nên \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)
Võ Đông Anh Tuấn
Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)
a)
\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)
Vậy \(7>3\sqrt{5}\)
b)
\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)
Vậy \(8< 2\sqrt{7}+3\)
c)
\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)
Vậy \(3\sqrt{6}< 2\sqrt{15}\)
1.a)
\(2\sqrt{3}=\sqrt{12}>\sqrt{9}=3.\)
\(3\sqrt{2}=\sqrt{18}>\sqrt{16}=4.\)
Suy ra VT > 7
1.b)
\(\sqrt{16}+\sqrt{25}=4+5=9\)
2.a)
\(\sqrt{21-6\sqrt{6}}=\sqrt{\left(3\sqrt{2}\right)^2-6\sqrt{6}+3}=3\sqrt{2}-\sqrt{3}\)
b)\(\sqrt{9-2\sqrt{14}}=\sqrt{\frac{18-4\sqrt{14}}{2}}=\frac{\sqrt{14}-2}{\sqrt{2}}=\sqrt{7}-1\)
Các câu còn lại bạn làm tương tự nhé!
c) \(\sqrt{4-\sqrt{7}}=\frac{1}{\sqrt{2}}.\sqrt{8-2\sqrt{7}}=\frac{1}{\sqrt{2}}\sqrt{7-2\sqrt{7}+1}\)
\(=\frac{1}{\sqrt{2}}\sqrt{\left(\sqrt{7}-1\right)^2}=\frac{\sqrt{2}\left(\sqrt{7}-1\right)}{2}\)
d) \(\sqrt{4+2\sqrt{3}-\sqrt{4-2\sqrt{3}}}=\sqrt{4+2\sqrt{3}-\sqrt{3-2\sqrt{3}+1}}\)
\(=\sqrt{4+2\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{4+2\sqrt{3}-\sqrt{3}+1}=\sqrt{5+\sqrt{3}}\)
* \(4\)và \(1+2\sqrt{2}\)
Ta có \(3=\sqrt{9}\)
\(2\sqrt{2}=\sqrt{2^2.2}=\sqrt{8}\)
Ta lại có \(8< 9\Leftrightarrow\sqrt{8}< \sqrt{9}\)
Hay \(2\sqrt{2}< 3\)\(\Leftrightarrow1+2\sqrt{2}< 1+3\Leftrightarrow1+2\sqrt{2}< 4\)
a)
Có: \(1+2\sqrt{2}=1+\sqrt{8}< 1+\sqrt{9}=1+3=4\)
Vậy \(4>1+2\sqrt{2}\)
b) Có: \(2\sqrt{6}-1=\sqrt{24}-1< \sqrt{25}-1=5-1=4\)
Vậy \(4>2\sqrt{6}-1\)
c) Có: \(3\sqrt{3}=\sqrt{27}< \sqrt{28}=2\sqrt{7}\)
=> \(3\sqrt{3}< 2\sqrt{7}\)
=> \(-3\sqrt{3}>-2\sqrt{7}\)