Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
N=5/10^2005+5/10^2006+610^2006
M=5/10^2005+6/10^2005+5/10^2006
Ta có \(A=\frac{10}{2^7}+\frac{10}{2^6}=\frac{5}{2^6}+\frac{10}{2^6}=\frac{15}{2^6}\)
Lại có B = \(\frac{11}{2^7}+\frac{9}{2^6}=\frac{5,5}{2^6}+\frac{9}{2^6}=\frac{14,5}{2^6}\)
Vì \(\frac{15}{2^6}>\frac{14,5}{2^6}\Rightarrow A>B\)
b) Ta có : \(A=\frac{-7}{10^{2005}}+\frac{-15}{10^{2006}}=\frac{-70}{10^{2006}}+\frac{-15}{10^{2006}}=\frac{-85}{10^{2006}}\)
Lại có B = \(\frac{-15}{10^{2005}}+\frac{-7}{10^{2006}}=\frac{-150}{10^{2006}}+\frac{-7}{10^{2006}}=\frac{-157}{10^{2006}}\)
Vì \(\frac{-85}{10^{2006}}>\frac{-157}{10^{2006}}\Rightarrow A< B\)
Ta có : \(\frac{2003.2004-1}{2003.2004}=\frac{2003.2004}{2003.2004}-\frac{1}{2003.2004}=1-\frac{1}{2003.2004}\)
\(\frac{2004.2005-1}{2004.2005}=\frac{2004.2005}{2004.2005}-\frac{1}{2004.2005}=1-\frac{1}{2004.2005}\)
Vì \(\frac{1}{2003.2004}>\frac{1}{2004.2005}\)
Nên : \(\frac{2003.2004-1}{2003.2004}< \frac{2004.2005-1}{2004.2005}\)