Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) 2225 và 3150
Ta có:2225=(29)25=51225
3150=(36)25=72925
Vì 51225<72925
Suy ra: 2225<3150
Câu 2:
a)\(25^3:5^2=\left(5^2\right)^3:5^2=5^6:5^2=5^4\)
b)\(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6=\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6=\left(\frac{3}{7}\right)^{21}:\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^9\)
c)\(3-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2=3+\frac{1}{4}:2=3+\frac{1}{8}=\frac{25}{8}\)
Câu 3:
a)\(9.3^3.\frac{1}{81}.3^2=3^2.3^3.3^2.\left(\frac{1}{3^4}\right)=3^7:3^4=3^3\)
b)\(4.2^5:\left(2^3.\frac{1}{16}\right)=2^2.2^5:\left(2^3.\frac{1}{2^4}\right)=2^7:\frac{1}{2}=2^8\)
c)\(3^2.2^5.\left(\frac{2}{3}\right)^2=288.\frac{4}{9}=2^7\)
d)\(\left(\frac{1}{3}\right)^3.\frac{1}{3}.9^2=\left(\frac{1}{3}\right)^4.\left(3^2\right)^2=3^4.\left(\frac{1}{3}\right)^4=3^4:3^4=1\)
Bạn hãy đăng từng bài để tiện trao đổi. Yên tâm mình sẽ giúp bạn.
\(8A=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\)
\(8B=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)
\(\text{Vì }\frac{7}{8^{19}+1}>\frac{7}{8^{24}+1}\)
\(\Rightarrow8A>8B\)
\(\Rightarrow A>B\)
\(\text{Câu B làm tương tự nhé}\)
\(S=20^2-19^2+18^2-17^2+...+2^2-1^2\)
\(S=\left(20-19\right)\left(20+19\right)+\left(18-17\right)\left(18+17\right)+...+\left(2-1\right)\left(2+1\right)\)
\(S=39+35+31+...+3\)
\(S=\frac{\left(3+39\right)}{2}.\left(\frac{39-3}{4}+1\right)=210\)
2/ \(1^2+2^2+3^2+...+10^2=385\)
\(\Rightarrow2^2\left(1^2+2^2+3^2+...+10^2\right)=2^2.385\)
\(\Rightarrow2^2+4^2+8^2+...+20^2=4.385=1540\)
1)\(S=\left(20^2+18^2+16^2+...+2^2\right)-\left(19^2+17^2+...+1^2\right)\\ S=20^2-19^2+18^2-17^2+...+2^2-1^2\\ S=\left(20-19\right).\left(20+19\right)+\left(18-17\right)\left(18+17\right)+...+\left(2-1\right).\left(2+1\right)\\ S=39+35+31+...+3\\ S=\frac{\left(3+39\right)}{2}+\left(\frac{39-3}{4}+1\right)\\ S=210\)
2)\(2^2+4^2+6^2+...+20^2\\ =1^2.2^2+2^2.2^2+3^2.2^2+...+10^2.2^2\\ =2^2.\left(1^2+2^2+3^2+...+10^2\right)\\=4.385\\ =1540 \)
#tick&theo dõi
\(a,\left[2^{17}+16^2\right]\cdot\left[9^{15}-3^{15}\right]\cdot\left[2^4-4^2\right]\)
\(=\left[2^{17}+16^2\right]\cdot\left[9^{15}-3^{15}\right]\cdot\left[16-16\right]\)
\(=\left[2^{17}+16^2\right]\left[9^{15}-3^{15}\right]\cdot0=0\)
\(b,\left[8^{2017}-8^{2015}\right]\cdot\left[8^{2014}\cdot8\right]\)
\(=8^{2015}\left[8^2-1\right]\cdot8^{2015}\)
\(=8^{2015}\cdot63\cdot8^{2015}=8^{4030}\cdot63\)sửa lại câu b , có vấn đề rồi
\(c,\frac{2^8+8^3}{2^5\cdot2^3}=\frac{2^8+\left[2^3\right]^3}{2^5\cdot2^3}=\frac{2^8+2^9}{2^8}=\frac{2^8\left[1+2\right]}{2^8}=3\)
2.a, \(2^6=\left[2^3\right]^2=8^2\)
Mà 8 = 8 nên 82 = 82 hay 26 = 82
b, \(5^3=5\cdot5\cdot5=125\)
\(3^5=3\cdot3\cdot3\cdot3\cdot3=243\)
Mà 125 < 243 nên 53 < 35
c, 26 = [23 ]2 = 82
Mà 8 > 6 nên 82 > 62 hay 26 > 62
d, 7200 = [72 ]100 = 49100
6300 = \(\left[6^3\right]^{100}\)= 216100
Mà 49 < 216 nên 49100 < 216100 hay 7200 < 6300
32 > 22
52>42
....
212>202
Vậy A > 12 + B
=> A>B
Ta có: 21 > 20 > 0; 19 > 18 > 0; ...; 2 > 1 > 0
=> 21^2 > 20^2; 19^2 > 18^2; ...; 3^2 > 2^2; 1^2 > 0
+ 18^2 +...+2^2 + 0 => A > B