K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2015

bn có sai đề bài ko vậy?

11 tháng 4 2015

sorry , mới học lớp 5 !

11 tháng 4 2015

                    ta có công thức \(\frac{a}{b}<1\)thì\(\frac{a}{b}<\frac{a+n}{b+n}\)

\(A=\frac{10^{2005}+1}{10^{2006}+1}<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10\left(10^{2004}+1\right)}{10\left(10^{2005}+1\right)}=\frac{10^{2004}+1}{10^{2005}+1}=B\left(1\right)\)

                          Từ (1)=> A<B

12 tháng 4 2017

\(10A=\frac{10^{2006}+10}{10^{2006}+1}=\frac{10^{2006}+1+9}{10^{2006}+1}=\frac{10^{2006}+1}{10^{2006}+1}+\frac{9}{10^{2006}+1}=1+\frac{9}{10^{2006}+1}\left(1\right)\)

\(10A=\frac{10^{2005}+10}{10^{2005}+1}=\frac{10^{2005}+1+9}{10^{2005}+1}=\frac{10^{2005}+1}{10^{2005}+1}+\frac{9}{10^{2005}+1}=1+\frac{9}{10^{2005}+1}\left(2\right)\)

Từ (1) và (2)

=>A<B

22 tháng 3 2016

đề có vẻ sai ở mẫu số của ps thứ nhất

22 tháng 3 2016

\(\Leftrightarrow10A=\frac{10\left(10^{2004}+1\right)}{10^{2005}+1}\)

\(\Rightarrow10A=\frac{10^{2005}+10}{10^{2005}+1}\)

\(10A=\frac{10^{2005}+1+9}{10^{2005}+1}=\frac{10^{2005}+1}{10^{2005}+1}+\frac{9}{10^{2005}+1}\)

\(10A=1+\frac{9}{10^{2005}+1}\)

tương tự như trên ta có :

\(10B=1+\frac{9}{10^{2006}+1}\)

ta thấy:102005+1<102006+1

\(\Rightarrow\frac{9}{10^{2005}+1}>\frac{9}{10^{2006}+1}\)

\(\Rightarrow1+\frac{9}{10^{2005}+1}>1+\frac{9}{10^{2006}+1}\)

=>10A>10B

=>A>B

kl: vậy A>B

9 tháng 4 2018

Bạn có thể tham khảo ở đây :

Câu hỏi của Vân Trang Bùi - Toán lớp 6 | Học trực tuyến

27 tháng 3 2017

Mọi người tk mình đi mình đang bị âm nè!!!!!!

Ai tk mình mình tk lại nha !!!

27 tháng 3 2017

đếu có câu trả lời ah

24 tháng 7 2020

a) Ta có : 10A = \(\frac{10\left(10^{2004}+1\right)}{10^{2005}+1}=\frac{10^{2005}+10}{10^{2005}+1}=1+\frac{9}{10^{2005}+1}\)

Lại có 10B = \(\frac{10\left(10^{2005}+1\right)}{10^{2006}+1}=\frac{10^{2006}+10}{10^{2006}+1}=1+\frac{9}{10^{2006}+1}\)

Vì \(\frac{9}{10^{2005}+1}>\frac{9}{10^{2006}+1}\Rightarrow1+\frac{9}{10^{2005}+1}>1+\frac{9}{10^{2006}+1}\)

=> 10A > 10B 

=> A > B

b) Ta có A = \(\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)

Lại có B = \(\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\Rightarrow1+\frac{2}{20^{10}-1}< 1-\frac{2}{20^{10}-3}\) 

=> A < B

24 tháng 7 2020

Cảm ơn bạn rất nhiều nha

27 tháng 2 2024

10A=102005+110(102004+1)

⇒10�=102005+10102005+110A=102005+1102005+10

10�=102005+1+9102005+1=102005+1102005+1+9102005+110A=102005+1102005+1+9=102005+1102005+1+102005+19

10�=1+9102005+110A=1+102005+19

tương tự như trên ta có :

10�=1+9102006+110B=1+102006+19

ta thấy:102005+1<102006+1

⇒9102005+1>9102006+1102005+19>102006+19

⇒1+9102005+1>1+9102006+11+102005+19>1+102006+19

=>10A>10B

=>A>B