Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{200}\)và \(2^{300}\)
ta có
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Vì \(8^{100}< 9^{100}\Rightarrow3^{200}>2^{300}\)
ti ck đi làm tiếp cho
a/
\(37^{1320}=\left(37^2\right)^{660}=1369^{660}\)
\(11^{1979}< 11^{1980}=\left(11^3\right)^{660}=1331^{660}\)
\(\Rightarrow1363^{660}>1331^{660}\Rightarrow37^{1320}>11^{1979}\)
b/
\(27^{11}=\left(3^3\right)^{11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{32}\)
\(\Rightarrow27^{11}>81^8\)
d/
\(3^{39}< 3^{40}=\left(3^2\right)^{20}=9^{20}< 9^{21}< 11^{21}\)
e/ \(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
\(\Rightarrow5^{36}>11^{24}\)
g/ \(21^{15}=3^{15}.7^{15}\)
\(27.49^8=3^3.\left(7^2\right)^8=3^3.7^{16}\)
\(\frac{21^{15}}{27.49^8}=\frac{3^{15}.7^{15}}{3^3.7^{16}}=\frac{3^{12}}{7}>1\Rightarrow21^{15}>27.49^8\)
f/ \(199^{20}=\left(199^4\right)^5\)
\(2003^{15}=\left(2003^3\right)^5\)
\(2003^5>1990^5\)
\(\frac{1990^5}{199^4}=\frac{199^5.10^5}{199^4}=199.10^5>1\)
\(\Rightarrow2003^5>1990^5>199^4\Rightarrow2003^{15}>199^{20}\)
536 = (53)12 = 12512 > 12112 = (112)12 = 1124.Vậy 536 > 1124
So sánh 2 lũy thừa :
\(5^{36};11^{24}\)
\(\Leftrightarrow5^{36}>11^{24}\)