Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân cả hai tử của \(A\)và \(B\)với 2 , ta được :
\(10A=10.\left(\frac{10^{2016}+1}{10^{2017}+1}\right)=\frac{10^{2017}+1+9}{10^{2017}+1}=1+\frac{9}{2^{2017}+1}\)
\(10B=10\left(\frac{10^{2017}+1}{10^{2018}+1}\right)=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}}=1+\frac{9}{10^{2018}+1}\)
Vì \(1=1;9=9\)
\(\Rightarrow\)Ta so sánh mẫu , ta có:
\(10^{2017}< 10^{2018}\)
\(\Rightarrow10^{2017}+1< 10^{2018}+1\)
\(\Rightarrow1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)
\(\Rightarrow10A>10B\)
Hay \(A>B\)
\(A=\frac{5^{2016}+1}{5^{2017}+1}\)
\(\Rightarrow5A=\frac{5^{2017}+5}{5^{2017}+1}=1+\frac{4}{5^{2017}+1}\)
\(B=\frac{5^{2017}+1}{5^{2018}+1}\)
\(\Rightarrow5B=\frac{5^{2018}+5}{5^{2018}+1}=1+\frac{4}{5^{2018}+1}\)
Do \(\frac{4}{5^{2018}+1}< \frac{4}{5^{2017}+1}\)
\(\Rightarrow5A>5B\Leftrightarrow A>B\)
1: so sánh 2016/2017+2017/2018
vì 2016/2017 > 1/2017 >1/2018 =
> 2016/2017+2017/2018 >1/2018+2017/2018=1
vậy .....