Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8}{10^7-8}+\frac{13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7}{10^8-7}+\frac{13}{10^8-7}\)
Dễ thấy 107 - 8 < 108 - 7 \(\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\)
\(\Rightarrow A>B\)
So sanh cac luy thua sau :
a) 10750 voi 7375
b) 1920 voi 98 . 510
c) 1340 voi 2161
d) 333444 voi 444333
a, \(5^{40}=\left(5^4\right)^{10}=625^{10}\)\(>20^{10}\)
\(=>5^{40}>20^{10}\)
b , \(4^{30}=\left(4^3\right)^{10}=64^{10}\)
\(6^{20}=\left(3^2\right)^{10}=9^{10}\)
\(=>4^{30}>6^{20}\)
Tham khảo ở phần Câu hỏi tương tự bạn nhé :
Câu hỏi của Trịnh Thúy An - Toán lớp 5 - Học toán với OnlineMath
\(B=\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\)
\(B=1\cdot\frac{1}{5}+\frac{1}{2}\cdot\frac{1}{5}+\frac{1}{4}\cdot\frac{1}{5}+\frac{1}{8}\cdot\frac{1}{5}+...+\frac{1}{256}\cdot\frac{1}{5}\)
\(B=\frac{1}{5}\cdot\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\right)\)
Đặt \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\)
\(\Rightarrow2A-A=2-\frac{1}{256}\)
\(A=2-\frac{1}{256}\)
Thay A vào B
có: \(B=\frac{1}{5}.\left(2-\frac{1}{256}\right)=\frac{1}{5}\cdot\frac{511}{256}=\frac{511}{1280}\)
830.... 3220
830=83x10
=(83)10
=51210
3220=322x10
=(322)10
=102410
Vì 102410 >51210
=>3220 >830
554.... 381
554=56x9
=(56)9
=156259
381=39x9
=(39)9
=196839
Vì 196839 > 156259
=>381 > 554
1340.... 2161
1340=1340
2161=2160+1
=24x40+1
=(24)40+1
=1640+1
=1641
Vì 1641 >1340
=>2161 >1340
Ta có: 8^30=(2^3)^30=2^90 (1).
Và: 32^20=(2^5)^20=2^100 (2).
Từ (1) và (2) suy ra 2^90 < 2^100
Vậy 8^30 < 32^20.
Như vậy là bài toán đã xong rồi. Xin các bạn cho mình được không ạ.
a, 1920 > 98
b, 540 < 62010
c, Ta có: \(2^{161}=2^{7.23}=\left(2^7\right)^{23}=128^{23}\)
=> 12823 > 1340 hay 2161 > 1340
\(20^{10}=2^{10}.5^{10}<5^{10}.5^{30}=5^{40}\)
Vậy 5^40 > 20^10