Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có :
\(4A=\frac{2^2\left(2^{18}-3\right)}{2^{20}-3}=\frac{2^{20}-12}{2^{20}-3}=\frac{2^{20}-3-9}{2^{20}-3}=\frac{2^{20}-3}{2^{20}-3}-\frac{9}{2^{20}-3}=1-\frac{9}{2^{20}-3}\)
\(4B=\frac{2^2\left(2^{20}-3\right)}{2^{22}-3}=\frac{2^{22}-12}{2^{22}-3}=\frac{2^{22}-3-9}{2^{22}-3}=\frac{2^{22}-3}{2^{22}-3}-\frac{9}{2^{22}-3}=1-\frac{9}{2^{22}-3}\)
Vì \(2^{20}-3< 2^{22}-3\)
\(\Leftrightarrow\frac{9}{2^{20}-3}>\frac{9}{2^{22}-3}\)
\(\Leftrightarrow1-\frac{9}{2^{20}-3}< 1-\frac{9}{2^{22}-3}\)
\(\Leftrightarrow4A< 4B\)
\(\Leftrightarrow A< B\)
Vậy...
b/ Tương tự
1 A= 2^2+2^2+2^3+...+2^20
A= 2*2^2+2^3+...+2^20
A=2^3+2^3+...+2^20
tương tự vậy A=2^21 ( cố hiểu làm hơi tắt)
a/ 40^20=40^2.10=1600^10
3^30=3^3.10=27^10
vì 1600^10>27^10 nên 40^20>3^30
a) 40^20=(4^2)^10=16^10
30^30=(3^3)^10=27610
Vì 16<27=>16^10<27^10 hay 4^20<3^30
b) mk chịu
c) Đặt A= 1/3+1/3^2+1/3^3+...+1/3^99
=>3A=3( 1/3+1/3^2+1/3^3+...+1/3^99)
=>3A=1+1/3+1/3^2+...+1/3^98
=>3A-A=(1+1/3+1/3^2+...+1/3^98)-(1/3+1/3^2+1/3^3+...+1/3^99)
=>2A=1-1/3^99
=>A=(1-1/3^99)/2
=>A=1/2 - (1/3^99)/2 < 1/2=>a<1/2
Ta có:+) \(A=\frac{2^{19}-3}{2^{20}-3}\)
\(2A=\frac{2^{20}-6}{2^{20}-3}=\frac{\left(2^{20}-3\right)-3}{2^{20}-3}\)
\(2A=1-\frac{3}{2^{20}-3}\)
+)\(B=\frac{2^{20}-3}{2^{21}-3}\)
\(2B=\frac{2^{21}-6}{2^{21}-3}=\frac{\left(2^{21}-3\right)-3}{2^{21}-3}\)
\(2B=1-\frac{3}{2^{21}-3}\)
Vì \(2^{20}-3< 2^{21}-3\)nên \(1-\frac{3}{2^{20}-3}< 1-\frac{3}{2^{21}-3}\)
Hok tốt nha^^