Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4^{30}=2^{30}.2^{30}=\left(2^3\right)^{10}.\left(2^2\right)^{15}=8^{10}.4^{15}>8^{10}.3^{15}>8^{10}.3^{11}\)
\(=8^{10}.3^{10}.3=\left(8.3\right)^{10}.3=3.24^{10}\)
=>2^30+... >3.24^10
tick nhé(bn nói rồi mà)
\(VT=2^{30}+3^{30}+4^{30}\)
\(\Rightarrow VT\ge3\sqrt[3]{\left(2.3.4\right)^{3.10}=3.24^{10}=VP}\)
\(\Rightarrow VT\ge VP\)
\(\Rightarrow2^{30}+3^{30}+4^{30}\ge3.24^{10}\)
Cách làm cũng gần giống bạn Nhi:
Xét \(A=x^{30}+y^{30}+z^{30}\) với x ,y,z>0
Áp dụng BĐT cô si ta có:
\(A=x^{30}+y^{30}+z^{30}\ge3.\sqrt[3]{\left(xyz\right)^{30}}=3.\left(xyz\right)^{10}\)
Dấu bằng xảy ra khi x=y=z
Khi \(x\ne y\ne z\)sẽ không tồn tại dấu bằng
\(\Rightarrow x^{30}+y^{30}+z^{30}>3\left(xyz\right)^{10}\)
Thay x=2,y=3,z=4 \(\Rightarrow2^{30}+3^{30}+4^{30}>3.24^{10}\)
4^30=2^30*2^30
=2^30*4^15
3*24^10=3*3^10*8^10=3^11*2^30
mà 4^30>3^11
nên 2^30+3^30+4^30>3*24^10
4^30=2^30*2^30
=2^30*4^15
3*24^10=3*3^10*8^10=3^11*2^30
mà 4^30>3^11
nên 2^30+3^30+4^30>3*24^10
4^30=2^30*2^30
=2^30*4^15
3*24^10=3*3^10*8^10=3^11*2^30
mà 4^30>3^11
nên 2^30+3^30+4^30>3*24^10
Ta có: 4^30=2^30.2^30=2^30.4^15
3.24^10=3.(3.2^3)^10=2^30.3^11
Ta thấy: 3^11<3^15<4^15 => 4^15>3^11
Vì 4^15>3^11 nên 2^30.4^15>2^30.3^11
=>2^30+3^30+4^30>3.24^10
a) Ta có : (1/16)10 = [(1/2)4]10 = (1/2)40
Vì (1/2)40 < (1/2)50 nên (1/16)10 < (1/2)50
b) Ta có : 430 = ( 2 . 2)30 = 230 . 230 = (22)15 . (23)10 > 315 . 810 > 3 . 310 .810 = 3 . (3 . 8)10 = 3 .2410
Vậy nên 230 + 330 + 430 > 2410 . 3
Mình chỉ giải thế thôi, còn đâu bn tự làm tiếp
4^30=2^30*2^30
=2^30*4^15
3*24^10=3*3^10*8^10=3^11*2^30
mà 4^30>3^11
nên 2^30+3^30+4^30>3*24^10
có;
4^30=2^30.2^30=(2^3)^10.(2^2)^15=8^10.3^15>8^10.3^11
=8^10.3^10.3=3.24^10
Vậy 2^30.3^30.4^30>3.24^10
****