K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

Cách này ko chắc lắm, có gì sai mong bạn bỏ qua

Ta có:

\(22=\sqrt[3]{22^3}=\sqrt[3]{10648}\)

\(3\sqrt[3]{394}=\sqrt[3]{3^3}\cdot\sqrt[3]{394}=\sqrt[3]{27\cdot394}=\sqrt[3]{10638}\)

Dễ thấy 10648 > 10638 \(\Rightarrow\sqrt[3]{10648}>\sqrt[3]{10638}\Leftrightarrow22>3\sqrt[3]{394}\)

23 tháng 8 2016

Ta có: \(A=\sqrt{2012}-\sqrt{2011}=\frac{1}{\sqrt{2012}+\sqrt{2011}}< \frac{1}{\sqrt{2011}+\sqrt{2010}}\)

\(=\sqrt{2011}-\sqrt{2010}< \sqrt{2011}.\sqrt{2010}=B\)

Vậy A<B

18 tháng 7 2017

A= \(\frac{\left(\sqrt{30}\right)^2-\left(\sqrt{29}\right)^2}{\sqrt{30}+\sqrt{29}}\)\(\frac{1}{\sqrt{30}+\sqrt{29}}\)

B= \(\frac{\left(\sqrt{29}\right)^2-\left(\sqrt{28}\right)^2}{\sqrt{29}+\sqrt{28}}\)\(\frac{1}{\sqrt{29}+\sqrt{28}}\)

Mà ta có \(\sqrt{30}+\sqrt{29}\)>\(\sqrt{28}+\sqrt{29}\)

Nên \(\frac{1}{\sqrt{30}+\sqrt{29}}\)<\(\frac{1}{\sqrt{29}+\sqrt{28}}\)

Suy ra A<B

18 tháng 7 2017

CÓ MA BIẾT KIT