Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)-1-\frac{1}{2}-\frac{1}{3}-....-\frac{1}{50}\)
\(=\frac{1}{51}+\frac{1}{52}+.....+\frac{1}{100}\)
=>.....
\(\frac{1}{2}\left(\frac{4}{9}-x\right)-\frac{3}{2}\left(16-x\right)+\frac{1}{2}\left(5x+10\right)=0\)
\(\Leftrightarrow\frac{2}{9}-\frac{1}{2}x-24+\frac{3}{2}x+\frac{5}{2}x+5=0\)
\(\Leftrightarrow-\frac{169}{9}=\frac{7}{2}x\Leftrightarrow x=-\frac{338}{63}\)
Sai thì thông cảm cho mk nha
Ta có: \(2^{150}=\left(2^3\right)^{50}=8^{50}\)
\(3^{100}=\left(3^2\right)^{50}=9^{50}\)
=>\(8^{50}< 9^{50}\)
=>\(2^{150}< 3^{100}\)
\(D=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{100}-1\right)\)
\(=\left(\frac{1}{2}-\frac{2}{2}\right)\left(\frac{1}{3}-\frac{3}{3}\right)...\left(\frac{1}{100}-\frac{100}{100}\right)\)
\(=\frac{\left(-1\right)}{2}.\frac{\left(-2\right)}{3}...\frac{\left(-99\right)}{100}\)
\(=\left[\left(-1\right).\left(-1\right)...\left(-1\right)\text{ 99 thưa số -1 }\right].\left(\frac{1}{2}.\frac{2}{3}...\frac{99}{100}\right)\)
\(=-\frac{1}{100}\)\(>-\frac{1}{99}\)
\(\text{Vậy }D>-\frac{1}{99}\)
\(\frac{\left(-1\right)}{2}.\frac{\left(-2\right)}{3}...\frac{\left(-99\right)}{100}=\left(-1\right).\frac{1}{2}.\left(-1\right).\frac{2}{3}....\left(-1\right).\frac{99}{100}\)
dùng tính chất kếp hợp nhóm 99 thừa số -1 lại
\(=\left[\left(-1\right).\left(-1\right)...\left(-1\right)\text{ 99 thừa số -1}\right].\left(\frac{1}{2}.\frac{2}{3}...\frac{99}{100}\right)\)
òi còn j nữa ko
1
\(A=\frac{2019^{2019}+1}{2019^{2020}+1}< \frac{2019^{2019}+1+2018}{2019^{2020}+1+2018}=\frac{2019^{2019}+2019}{2019^{2020}+2019}=\frac{2019\left(2019^{2018}+1\right)}{2019\left(2019^{2019}+1\right)}\)
\(=\frac{2019^{2018}+1}{2019^{2019}+1}\)
2
\(M=\frac{100^{101}+1}{100^{100}+1}< \frac{100^{101}+1+99}{100^{100}+1+99}=\frac{100^{101}+100}{100^{100}+100}=\frac{100\left(100^{100}+1\right)}{100\left(100^{99}+1\right)}\)
\(=\frac{100^{100}+1}{100^{99}+1}=N\)
a: \(-\dfrac{11}{33}< 0< \dfrac{25}{16}\)
b: \(-\dfrac{17}{23}=\dfrac{-171717}{232323}\)
100^2 lớn hơn
1002 = 104
2100 = (24)25 = 1625.
Có 16 > 10, 25 > 4 => 104 < 1625
Vậy 2100 > 1002