Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tính nhanh tổng 20+21+22+...+29+30
20+21+22+23+24+25+26+27+28+29+30=
=(20+30)+(21+29)+(22+28)+(23+27)+(24+26)+25
=50+50+50+50+50+25
=50.5+25
=250+25
=275
a) 20+21+22+23+24+25
=(20+25)+(21+24)+(22+23)
=45+45+45
=45x3
135
b)
20+21+22+...+29+30
=(20+30)+(21+29)+...(24+26)+259 (tổng có 5 cặp)
=50+50+...+25
=50x5+25
=250+25
=275
#Châu's ngốc
a) 20 + 21 + 22 + 23 + 24 +25
= (20 + 25) + (21 + 24) + (22 + 23)
= 45 + 45 + 45
= 45 . 3 = 135
b) 20 + 21 + 22 +...+ 29 + 30
= (20 + 30) + (21 + 29) +...+ (24 + 26) + 25
= 50 + 50 +...+ 50 + 25
5 số 50
= 50 . 5 + 25
= 250 + 25
= 275
Vì: \(\frac{3}{21}=\frac{3}{21}\)
\(\frac{3}{22}\) < \(\frac{3}{21}\)
\(\frac{3}{23}\) < \(\frac{3}{21}\)
\(\frac{3}{24}\)<\(\frac{3}{21}\)
\(\frac{3}{25}\)< \(\frac{3}{21}\)
.....
\(\frac{2}{29}\)<\(\frac{3}{21}\)
\(\frac{2}{30}\)<\(\frac{3}{21}\)
Nên \(\frac{3}{21}+\frac{3}{22}+\frac{3}{23}+\frac{3}{24}+\frac{3}{25}+...+\frac{3}{29}+\frac{3}{30}\) < \(\frac{3}{21}.10\)
Ta có: \(\frac{3}{21}.10\) = \(\frac{10}{7}\)
Mà \(\frac{10}{7}\) < \(\frac{3}{2}\)
=>\(\frac{3}{21}+\frac{3}{22}+\frac{3}{23}+\frac{3}{24}+\frac{3}{25}+...+\frac{3}{29}+\frac{3}{30}\) < \(\frac{3}{2}\)
Vậy E < M
ta thay 21+29=50
co 4 cap =50
số ở giữa là
[29+21];2=25
tổng là 20+50x4+25=245
Số số hạng của tổng A là : \(\dfrac{30-21}{1}+1=10\left(sh\right)\)
`=>A=\underbrace{1/21+1/22+...+1/30}_{10sh}>\underbrace{1/30+1/30+1/30+...+1/30}_{10sh}`
`=>A>(1)/(30).10`
`=>A>10/30`
`=>A>1/3`
`=>đpcm`
\(A=\left[\left(2100-20\right):1+1\right]\cdot\left(2100+20\right):2\)
\(A=2081\cdot1060\)
`A=2^{0}+2^{1}+2^{2}+....+2^{99}`
`=(1+2+2^{2}+2^{3}+2^{4})+(2^{5}+2^{6}+2^{7}+2^{8}+2^{9})+......+(2^{95}+2^{96}+2^{97}+2^{97}+2^{99})`
`=(1+2+2^{2}+2^{3}+2^{4})+2^{5}(1+2+2^{2}+2^{3}+2^{4})+.....+2^{95}(1+2+2^{2}+2^{3}+2^{4})`
`=31+2^{5}.31+....+2^{95}.31`
`=31(1+2^{5}+....+2^{95})\vdots 31`
\(A=2^0+2^1+2^2+2^3+2^4+2^5+2^6+...+2^{99}\)
\(=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)
A = 20 + 21 + 22 + 23 + 24 + 25 … + 299
A=( 20 + 21 + 22 + 23 + 24) +( 25 … + 299)
A= 20.(20 + 21 + 22 + 23 + 24)+25.( 25 … + 299)
A= 1. 31+ 25.31… + 295.31
A= 31. (1+25...+295)
KL: ......
\(A=2^0+2^1+2^2+2^3+2^4+...+2^{99}=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)
20<21
21<22
22<23
23<24
24<25