Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk dịch hộ bạn đề cho dễ làm,bạn xem xem mk dịch đúng ko nhé:
\(A=20^{10}+\left(\frac{1}{20}\right)^{10}-1\)
\(B=20^{10}-\left(\frac{1}{20}\right)^{10}-3\)
1.a)A = (1 - 1/3)(1-2/5)...(1-5/5)....(1-9/5)
=(1-1/3)....0.....(1-9/5)
=0
=>đpcm.
b)ta xét:
1/22 = 1/2x2 < 1/1x2
.............
1/82 = 1/8x8 <1/7x8
=>B < 1/1x2 + 1/2x3 ... + 1 + 1/7x8
<=> B <1 - 1/2 + 1/2 - 1/3 + ... + 1/7 - 1/8
<=> B < 1 - 1/8 = 7/8 < 1
=> B < 1 => đpcm
2.a) Đặt m = 2007(2006+2007) = 2006(2006 + 2007) + (2006+2007)
Đặt n = 2006(2007+2008) = 2006(2006+2007) + (2006 + 2006)
Ta thấy : (2006+2007) > (2006 + 2006) => m > n , áp dụng công thức "a.d > c.d <=> a/b > b/d (a,c thuộc Z// b,d thuộc N)
=> A > B
b)ta có: D = 196 + 197/197 + 198 = (196/197+198) + (197/197+198) < 196/197 + 197/198 = C
=> C > D
c)gọi 2010 là a
ta thấy : (a + 1)(a-3) = (a - 1)(a - 3) + 2(a - 3) < (a - 1)(a - 3) + 2(a - 1) = (a - 1)(a - 1)
áp dụng: ad > bc <=> a/b > c/d ( a,b,c,d thuộc Z// b,d > 0)
=> E > F
\(\frac{10^{20}+1}{10^{22}+1}=\frac{10^{20}+\frac{1}{100}+\frac{99}{100}}{10^{22}+1}=\frac{1}{100}+\frac{99}{100\left(10^{22}+1\right)}\)
\(\frac{10^{22}+1}{10^{24}+1}=\frac{10^{22}+\frac{1}{100}+\frac{99}{100}}{10^{24}+1}=\frac{1}{100}+\frac{99}{100\left(10^{24}+1\right)}\)
Có \(10^{22}+1< 10^{24}+1\Rightarrow\frac{99}{100\left(10^{22}+1\right)}>\frac{99}{100\left(10^{24}+1\right)}\)
do đó \(\frac{10^{20}+1}{10^{22}+1}>\frac{10^{22}+1}{10^{24}+1}\).
Ta thấy : \(10^{20}=100^{10}\)
Với lại \(90^{10}=90^{10}\)
Mà \(100>90=>10^{20}>90^{10}\)
Trả lời:
a, Ta có: 320 ; 274 = ( 33 )4 = 312
Vì 320 > 312 nên 320 > 274
b, 225 ; 166 = ( 24 )6 = 224
Vì 225 > 224 nên 225 > 166
Vì \(20^{10}-1>20^{10}-3\)
\(\Rightarrow B=\frac{20^{10}-1}{20^{10}-3}>1\)
\(\Rightarrow B=\frac{20^{10}-1}{20^{10}-3}>\frac{20^{10}-1+2}{20^{10}-3+2}=\frac{20^{10}+1}{20^{10}-1}=A\)
\(\Rightarrow B>A\)
\(\Rightarrow A< B\)
vậy A < B