K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

Hình như thiếu mũ 2007 -.- Sửa luôn nhóe :)

Trước hết ta tính tổng sau, với các số tự nhiên a, n đều lớn hơn 1.

\(S_n=\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^n}\)

Ta có: \(\left(a-1\right)S_n=aS_n-S_n\)

\(=\left(1+\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^{n-1}}\right)-\left(\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^{n-1}}+\dfrac{1}{a^n}\right)\)\(=1-\dfrac{1}{a^n}< 1\Rightarrow S_n< \dfrac{1}{a-1}\left(1\right)\)

Áp dụng BĐT ( 1 ) cho a = 2008 và mọi n = 2,3, ..., 2004 ta được:

\(B=\dfrac{1}{2008}+\left(\dfrac{1}{2008}+\dfrac{1}{2008^2}\right)^2+...+\left(\dfrac{1}{2008}+\dfrac{1}{2008^2}+...+\dfrac{1}{2008^{2007}}\right)^{2007}< \dfrac{1}{2007}+\left(\dfrac{1}{2007}\right)^2+...+\left(\dfrac{1}{2007}\right)^{2007}\left(2\right)\)

Lại áp dụng BĐT ( 1 ) cho a = 2007 và n = 2007, ta được:

\(\dfrac{1}{2007}+\dfrac{1}{2007^2}+...+\dfrac{1}{2007^{2007}}< \dfrac{1}{2006}=A\left(3\right)\)

Từ ( 2 ) và ( 3 ) => B < A.

14 tháng 7 2017

Thiệt ta là tui chép sách ngaingung

26 tháng 1 2018

đầu bài có sai k ạ???

11 tháng 2 2018

de bai hinh nhu khong sai ban a

6 tháng 3 2017

đề ko có vấn đề nhỉ?

7 tháng 3 2017

Không chẳng có vấn đề gì cả. có thể sai so với cái đề nào đó "nội hàm nó đúng"

\(\dfrac{x+2}{2008}+\dfrac{x+3}{2007}=\dfrac{-x+4}{2006}+\dfrac{-x-2008}{6}\)

\(\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}+\dfrac{1}{6}\right).x=\left(\dfrac{4}{2006}-\dfrac{2008}{6}-\dfrac{2}{2008}-\dfrac{3}{2007}\right)\)\(x=\dfrac{\left(\dfrac{4}{2006}-\dfrac{2008}{6}-\dfrac{2}{2008}-\dfrac{3}{2007}\right)}{\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}+\dfrac{1}{6}\right).}\)

Thích thì rút gọn chẳng thích thì kệ nó

12 tháng 8 2017

Mở đầu về phương trình

Mở đầu về phương trình

12 tháng 8 2017

2.

\(\dfrac{x+5}{2006}+\dfrac{x+4}{2007}+\dfrac{x+3}{2008}< \dfrac{x+9}{2002}+\dfrac{x+10}{2001}+\dfrac{x+11}{2000}\\ \Leftrightarrow\dfrac{x+5}{2006}+1+\dfrac{x+4}{2007}+1+\dfrac{x+3}{2008}+1< \dfrac{x+9}{2002}+1+\dfrac{x+10}{2001}+1+\dfrac{x+11}{2000}+1\\ \Leftrightarrow\dfrac{x+2011}{2006}+\dfrac{x+2011}{2007}+\dfrac{x+2011}{2008}< \dfrac{x+2011}{2002}+\dfrac{x+2011}{2001}+\dfrac{x+2011}{2000}\\ \Leftrightarrow\dfrac{x+2011}{2006}+\dfrac{x+2011}{2007}+\dfrac{x+2011}{2008}-\dfrac{x+2011}{2002}-\dfrac{x+2011}{2001}-\dfrac{x+2011}{2000}< 0\\ \Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}-\dfrac{1}{2002}-\dfrac{1}{2001}-\dfrac{1}{2000}\right)< 0\\ \Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2006}-\dfrac{1}{2002}+\dfrac{1}{2007}-\dfrac{1}{2001}+\dfrac{1}{2008}-\dfrac{1}{2000}\right)< 0\)

\(\left\{{}\begin{matrix}\dfrac{1}{2006}< \dfrac{1}{2002}\\\dfrac{1}{2007}< \dfrac{1}{2001}\\\dfrac{1}{2008}< \dfrac{1}{2000}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2006}-\dfrac{1}{2002}< 0\\\dfrac{1}{2007}-\dfrac{1}{2001}< 0\\\dfrac{1}{2008}-\dfrac{1}{2000}< 0\end{matrix}\right.\Rightarrow\left(\dfrac{1}{2006}-\dfrac{1}{2002}+\dfrac{1}{2007}-\dfrac{1}{2001}+\dfrac{1}{2008}-\dfrac{1}{2000}\right)< 0\)

\(\Rightarrow x>0\)

Vậy \(x>0\)

\(C=\dfrac{\sqrt{x}-\sqrt{x+1}}{-1}+\dfrac{\sqrt{x+1}-\sqrt{x+2}}{-1}+...+\dfrac{\sqrt{x+2007}-\sqrt{x+2008}}{-1}\)

\(=-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-...-\sqrt{x+2007}+\sqrt{x+2008}\)\(=-\sqrt{x}+\sqrt{x+2008}\)

\(C=-\sqrt{\sqrt[2007]{2008}}+\sqrt{\sqrt[2007]{2008}+2008}\)

AH
Akai Haruma
Giáo viên
28 tháng 1 2021

Lời giải:

a) 

PT \(\Leftrightarrow \frac{(x+2)^3}{8}-\frac{x^3+8}{2}=0\)

\(\Leftrightarrow (x+2)^3-4(x^3+8)=0\)

\(\Leftrightarrow (x+2)^3-4(x+2)(x^2-2x+4)=0\)

\(\Leftrightarrow (x+2)[(x+2)^2-4(x^2-2x+4)]=0\)

\(\Leftrightarrow (x+2)(-3x^2+12x-12)=0\)

\(\Leftrightarrow (x+2)(x^2-4x+4)=0\Leftrightarrow (x+2)(x-2)^2=0\Rightarrow x=\pm 2\)

b) Bạn kiểm tra lại xem có sai đề không?

30 tháng 3 2017

\(\dfrac{2-x}{2007}\) - 1 = \(\dfrac{1-x}{2008}\) - \(\dfrac{x}{2009}\)

<=> \(\dfrac{2-x}{2009}\) +1 -1 +1 = \(\dfrac{1-x}{2008}\) +1 - \(\dfrac{x}{2009}\) +1

<=> \(\dfrac{2-x+2007}{2007}\) = \(\dfrac{1-x+2008}{2008}\) + \(\dfrac{-x+2009}{2009}\)

<=> \(\dfrac{2009-x}{2007}\) = \(\dfrac{2009-x}{2008}\) + \(\dfrac{2009-x}{2009}\)

<=> (2009-x)(\(\dfrac{1}{2007}\) - \(\dfrac{1}{2008}\) - \(\dfrac{1}{2009}\) ) = 0

<=> 2009 -x = 0

hoặc: \(\dfrac{1}{2007}\) - \(\dfrac{1}{2008}\) -\(\dfrac{1}{2009}\) = 0

\(\dfrac{1}{2007}\) \(\ne\) \(\dfrac{1}{2008}\) + \(\dfrac{1}{2009}\)

=> \(\dfrac{1}{2007}\) - (\(\dfrac{1}{2008}\) + \(\dfrac{1}{2009}\) ) \(\ne\) 0

=> 2009 -x =0

<=> x =2009

30 tháng 3 2017

\(\dfrac{2-x}{2007}-1=\dfrac{1-x}{2008}-\dfrac{x}{2009}\\ \Leftrightarrow\dfrac{2009-x}{2007}-2=\dfrac{2009-x}{2008}-\dfrac{2009-x}{2009}-2\)

\(\Leftrightarrow\left(2009-x\right)\left(\dfrac{1}{2007}-\dfrac{1}{2008}+\dfrac{1}{2009}\right)=0\)

\(\Rightarrow2009-x=0\Leftrightarrow x=2009\)

15 tháng 5 2018

Giải:

\(\dfrac{2-x}{2007}-1=\dfrac{1-x}{2008}-\dfrac{x}{2009}\)

\(\Leftrightarrow\dfrac{2-x}{2007}-1+2=\dfrac{1-x}{2008}-\dfrac{x}{2009}+2\)

\(\Leftrightarrow\dfrac{2-x}{2007}+1=\dfrac{1-x}{2008}+1-\dfrac{x}{2009}+1\)

\(\Leftrightarrow\dfrac{2-x+2007}{2007}=\dfrac{1-x+2008}{2008}-\dfrac{x+2009}{2009}\)

\(\Leftrightarrow\dfrac{2009-x}{2007}=\dfrac{2009-x}{2008}-\dfrac{2009-x}{2009}\)

\(\Leftrightarrow\dfrac{2009-x}{2007}-\dfrac{2009-x}{2008}+\dfrac{2009-x}{2009}=0\)

\(\Leftrightarrow\left(2009-x\right)\left(\dfrac{1}{2007}-\dfrac{1}{2008}+\dfrac{1}{2009}\right)=0\)

\(\dfrac{1}{2007}-\dfrac{1}{2008}+\dfrac{1}{2009}\ne0\)

\(\Leftrightarrow2009-x=0\)

\(\Leftrightarrow x=2009\)

Vậy ...

15 tháng 5 2018

\(\dfrac{2-x}{2007}-1=\dfrac{1-x}{2008}-\dfrac{x}{2009}\)

\(\Leftrightarrow\left(\dfrac{2-x}{2007}+1\right)-\left(1+1\right)=\left(\dfrac{1-x}{2008}+1\right)-\left(\dfrac{x}{2009}+1\right)\)

\(\Leftrightarrow\dfrac{2-x+2007}{2007}=\dfrac{1-x+2008}{2008}-\dfrac{x+2009}{2009}\)

\(\Leftrightarrow\dfrac{2-x+2007}{2007}=\dfrac{1-x+2008}{2008}+\dfrac{-x+2009}{2009}\)

\(\Leftrightarrow\dfrac{2009-x}{2007}=\dfrac{2009-x}{2008}+\dfrac{2009-x}{2009}\)

\(\Leftrightarrow\left(2009-x\right)\left(\dfrac{1}{2007}-\dfrac{1}{2008}-\dfrac{1}{2009}\right)=0\)

\(\Leftrightarrow2009-x=0\)

\(\Leftrightarrow x=2009\)

a)\(\dfrac{2x+1}{x-3}-\dfrac{x}{x+3}=0\left(ĐKXĐ:x\ne\pm3\right)\)

\(\Leftrightarrow\left(2x+1\right)\left(x+3\right)-\left(x-3\right)x=0\)

\(\Leftrightarrow2x^2+7x+3-x^2+3x=0\)

\(\Leftrightarrow x^2+10x+3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5+\sqrt{22}\\x=-5-\sqrt{22}\end{matrix}\right.\)(tm)

7 tháng 3 2018

b.

\(\left(x-4\right)\left(x-5\right)=12\)

\(\Leftrightarrow x^2-9x+20-12-0\)

\(\Leftrightarrow x^2-9x+8=0\)

\(\Leftrightarrow x^2-8x-x+8=0\)

\(\Leftrightarrow x\left(x-8\right)-\left(x-8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)

Vậy........

22 tháng 4 2018

\(\dfrac{2008a}{ab+2008a+2008}+\dfrac{b}{bc+b+2008}+\dfrac{c}{ca+c+1}=1\)

=>\(\dfrac{2008a}{ab+2008a+2008}+\dfrac{ab}{abc+ab+a2008}+\dfrac{abc}{abca+abc+ab1}=1\)

=>\(\dfrac{2008a}{ab+2008a+2008}+\dfrac{ab}{2008+ab+2008a}+\dfrac{2008}{2008a+2008+ab}=1\)(do abc=2008_

=>\(\dfrac{2008a+2008+ab}{2008a+2008+ab}=1\)