Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không chẳng có vấn đề gì cả. có thể sai so với cái đề nào đó "nội hàm nó đúng"
\(\dfrac{x+2}{2008}+\dfrac{x+3}{2007}=\dfrac{-x+4}{2006}+\dfrac{-x-2008}{6}\)
\(\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}+\dfrac{1}{6}\right).x=\left(\dfrac{4}{2006}-\dfrac{2008}{6}-\dfrac{2}{2008}-\dfrac{3}{2007}\right)\)\(x=\dfrac{\left(\dfrac{4}{2006}-\dfrac{2008}{6}-\dfrac{2}{2008}-\dfrac{3}{2007}\right)}{\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}+\dfrac{1}{6}\right).}\)
Thích thì rút gọn chẳng thích thì kệ nó
2.
\(\dfrac{x+5}{2006}+\dfrac{x+4}{2007}+\dfrac{x+3}{2008}< \dfrac{x+9}{2002}+\dfrac{x+10}{2001}+\dfrac{x+11}{2000}\\ \Leftrightarrow\dfrac{x+5}{2006}+1+\dfrac{x+4}{2007}+1+\dfrac{x+3}{2008}+1< \dfrac{x+9}{2002}+1+\dfrac{x+10}{2001}+1+\dfrac{x+11}{2000}+1\\ \Leftrightarrow\dfrac{x+2011}{2006}+\dfrac{x+2011}{2007}+\dfrac{x+2011}{2008}< \dfrac{x+2011}{2002}+\dfrac{x+2011}{2001}+\dfrac{x+2011}{2000}\\ \Leftrightarrow\dfrac{x+2011}{2006}+\dfrac{x+2011}{2007}+\dfrac{x+2011}{2008}-\dfrac{x+2011}{2002}-\dfrac{x+2011}{2001}-\dfrac{x+2011}{2000}< 0\\ \Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}-\dfrac{1}{2002}-\dfrac{1}{2001}-\dfrac{1}{2000}\right)< 0\\ \Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2006}-\dfrac{1}{2002}+\dfrac{1}{2007}-\dfrac{1}{2001}+\dfrac{1}{2008}-\dfrac{1}{2000}\right)< 0\)
Vì \(\left\{{}\begin{matrix}\dfrac{1}{2006}< \dfrac{1}{2002}\\\dfrac{1}{2007}< \dfrac{1}{2001}\\\dfrac{1}{2008}< \dfrac{1}{2000}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2006}-\dfrac{1}{2002}< 0\\\dfrac{1}{2007}-\dfrac{1}{2001}< 0\\\dfrac{1}{2008}-\dfrac{1}{2000}< 0\end{matrix}\right.\Rightarrow\left(\dfrac{1}{2006}-\dfrac{1}{2002}+\dfrac{1}{2007}-\dfrac{1}{2001}+\dfrac{1}{2008}-\dfrac{1}{2000}\right)< 0\)
\(\Rightarrow x>0\)
Vậy \(x>0\)
\(C=\dfrac{\sqrt{x}-\sqrt{x+1}}{-1}+\dfrac{\sqrt{x+1}-\sqrt{x+2}}{-1}+...+\dfrac{\sqrt{x+2007}-\sqrt{x+2008}}{-1}\)
\(=-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-...-\sqrt{x+2007}+\sqrt{x+2008}\)\(=-\sqrt{x}+\sqrt{x+2008}\)
\(C=-\sqrt{\sqrt[2007]{2008}}+\sqrt{\sqrt[2007]{2008}+2008}\)
Lời giải:
a)
PT \(\Leftrightarrow \frac{(x+2)^3}{8}-\frac{x^3+8}{2}=0\)
\(\Leftrightarrow (x+2)^3-4(x^3+8)=0\)
\(\Leftrightarrow (x+2)^3-4(x+2)(x^2-2x+4)=0\)
\(\Leftrightarrow (x+2)[(x+2)^2-4(x^2-2x+4)]=0\)
\(\Leftrightarrow (x+2)(-3x^2+12x-12)=0\)
\(\Leftrightarrow (x+2)(x^2-4x+4)=0\Leftrightarrow (x+2)(x-2)^2=0\Rightarrow x=\pm 2\)
b) Bạn kiểm tra lại xem có sai đề không?
\(\dfrac{2-x}{2007}\) - 1 = \(\dfrac{1-x}{2008}\) - \(\dfrac{x}{2009}\)
<=> \(\dfrac{2-x}{2009}\) +1 -1 +1 = \(\dfrac{1-x}{2008}\) +1 - \(\dfrac{x}{2009}\) +1
<=> \(\dfrac{2-x+2007}{2007}\) = \(\dfrac{1-x+2008}{2008}\) + \(\dfrac{-x+2009}{2009}\)
<=> \(\dfrac{2009-x}{2007}\) = \(\dfrac{2009-x}{2008}\) + \(\dfrac{2009-x}{2009}\)
<=> (2009-x)(\(\dfrac{1}{2007}\) - \(\dfrac{1}{2008}\) - \(\dfrac{1}{2009}\) ) = 0
<=> 2009 -x = 0
hoặc: \(\dfrac{1}{2007}\) - \(\dfrac{1}{2008}\) -\(\dfrac{1}{2009}\) = 0
Vì \(\dfrac{1}{2007}\) \(\ne\) \(\dfrac{1}{2008}\) + \(\dfrac{1}{2009}\)
=> \(\dfrac{1}{2007}\) - (\(\dfrac{1}{2008}\) + \(\dfrac{1}{2009}\) ) \(\ne\) 0
=> 2009 -x =0
<=> x =2009
\(\dfrac{2-x}{2007}-1=\dfrac{1-x}{2008}-\dfrac{x}{2009}\\ \Leftrightarrow\dfrac{2009-x}{2007}-2=\dfrac{2009-x}{2008}-\dfrac{2009-x}{2009}-2\)
\(\Leftrightarrow\left(2009-x\right)\left(\dfrac{1}{2007}-\dfrac{1}{2008}+\dfrac{1}{2009}\right)=0\)
\(\Rightarrow2009-x=0\Leftrightarrow x=2009\)
Giải:
\(\dfrac{2-x}{2007}-1=\dfrac{1-x}{2008}-\dfrac{x}{2009}\)
\(\Leftrightarrow\dfrac{2-x}{2007}-1+2=\dfrac{1-x}{2008}-\dfrac{x}{2009}+2\)
\(\Leftrightarrow\dfrac{2-x}{2007}+1=\dfrac{1-x}{2008}+1-\dfrac{x}{2009}+1\)
\(\Leftrightarrow\dfrac{2-x+2007}{2007}=\dfrac{1-x+2008}{2008}-\dfrac{x+2009}{2009}\)
\(\Leftrightarrow\dfrac{2009-x}{2007}=\dfrac{2009-x}{2008}-\dfrac{2009-x}{2009}\)
\(\Leftrightarrow\dfrac{2009-x}{2007}-\dfrac{2009-x}{2008}+\dfrac{2009-x}{2009}=0\)
\(\Leftrightarrow\left(2009-x\right)\left(\dfrac{1}{2007}-\dfrac{1}{2008}+\dfrac{1}{2009}\right)=0\)
Vì \(\dfrac{1}{2007}-\dfrac{1}{2008}+\dfrac{1}{2009}\ne0\)
\(\Leftrightarrow2009-x=0\)
\(\Leftrightarrow x=2009\)
Vậy ...
\(\dfrac{2-x}{2007}-1=\dfrac{1-x}{2008}-\dfrac{x}{2009}\)
\(\Leftrightarrow\left(\dfrac{2-x}{2007}+1\right)-\left(1+1\right)=\left(\dfrac{1-x}{2008}+1\right)-\left(\dfrac{x}{2009}+1\right)\)
\(\Leftrightarrow\dfrac{2-x+2007}{2007}=\dfrac{1-x+2008}{2008}-\dfrac{x+2009}{2009}\)
\(\Leftrightarrow\dfrac{2-x+2007}{2007}=\dfrac{1-x+2008}{2008}+\dfrac{-x+2009}{2009}\)
\(\Leftrightarrow\dfrac{2009-x}{2007}=\dfrac{2009-x}{2008}+\dfrac{2009-x}{2009}\)
\(\Leftrightarrow\left(2009-x\right)\left(\dfrac{1}{2007}-\dfrac{1}{2008}-\dfrac{1}{2009}\right)=0\)
\(\Leftrightarrow2009-x=0\)
\(\Leftrightarrow x=2009\)
a)\(\dfrac{2x+1}{x-3}-\dfrac{x}{x+3}=0\left(ĐKXĐ:x\ne\pm3\right)\)
\(\Leftrightarrow\left(2x+1\right)\left(x+3\right)-\left(x-3\right)x=0\)
\(\Leftrightarrow2x^2+7x+3-x^2+3x=0\)
\(\Leftrightarrow x^2+10x+3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5+\sqrt{22}\\x=-5-\sqrt{22}\end{matrix}\right.\)(tm)
b.
\(\left(x-4\right)\left(x-5\right)=12\)
\(\Leftrightarrow x^2-9x+20-12-0\)
\(\Leftrightarrow x^2-9x+8=0\)
\(\Leftrightarrow x^2-8x-x+8=0\)
\(\Leftrightarrow x\left(x-8\right)-\left(x-8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)
Vậy........
\(\dfrac{2008a}{ab+2008a+2008}+\dfrac{b}{bc+b+2008}+\dfrac{c}{ca+c+1}=1\)
=>\(\dfrac{2008a}{ab+2008a+2008}+\dfrac{ab}{abc+ab+a2008}+\dfrac{abc}{abca+abc+ab1}=1\)
=>\(\dfrac{2008a}{ab+2008a+2008}+\dfrac{ab}{2008+ab+2008a}+\dfrac{2008}{2008a+2008+ab}=1\)(do abc=2008_
=>\(\dfrac{2008a+2008+ab}{2008a+2008+ab}=1\)
Hình như thiếu mũ 2007 -.- Sửa luôn nhóe :)
Trước hết ta tính tổng sau, với các số tự nhiên a, n đều lớn hơn 1.
\(S_n=\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^n}\)
Ta có: \(\left(a-1\right)S_n=aS_n-S_n\)
\(=\left(1+\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^{n-1}}\right)-\left(\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^{n-1}}+\dfrac{1}{a^n}\right)\)\(=1-\dfrac{1}{a^n}< 1\Rightarrow S_n< \dfrac{1}{a-1}\left(1\right)\)
Áp dụng BĐT ( 1 ) cho a = 2008 và mọi n = 2,3, ..., 2004 ta được:
\(B=\dfrac{1}{2008}+\left(\dfrac{1}{2008}+\dfrac{1}{2008^2}\right)^2+...+\left(\dfrac{1}{2008}+\dfrac{1}{2008^2}+...+\dfrac{1}{2008^{2007}}\right)^{2007}< \dfrac{1}{2007}+\left(\dfrac{1}{2007}\right)^2+...+\left(\dfrac{1}{2007}\right)^{2007}\left(2\right)\)
Lại áp dụng BĐT ( 1 ) cho a = 2007 và n = 2007, ta được:
\(\dfrac{1}{2007}+\dfrac{1}{2007^2}+...+\dfrac{1}{2007^{2007}}< \dfrac{1}{2006}=A\left(3\right)\)
Từ ( 2 ) và ( 3 ) => B < A.
Thiệt ta là tui chép sách