K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

Áp dụng BĐT CAuchy-Schwarz ta có:

Đặt \(A^2=\left(\sqrt{2003}+\sqrt{2005}\right)^2\)

\(\le\left(1+1\right)\left(2003+2005\right)\)

\(=2\cdot4008=8016\)

\(\Rightarrow A^2\le8016\Rightarrow A\le2\sqrt{2004}=B\)

3 tháng 7 2017

MÌNH LỚP 7 NHƯNG TRẢ LỜI ĐƯỢC LÈ

25 tháng 5 2016

\(\frac{\sqrt{x-2002}}{x-2002}-\frac{1}{x-2002}+\frac{\sqrt{y-2003}}{y-2003}-\frac{1}{y-2003}+\frac{\sqrt{z-2004}}{z-2004}-\frac{1}{z-2004}=\frac{3}{4}\)

\(1-\frac{1}{x-2002}+1-\frac{1}{y-2003}+1-\frac{1}{z-2004}=\frac{3}{4}\)

\(3-\frac{1}{x-2002}-\frac{1}{y-2003}-\frac{1}{z-2004}=\frac{3}{4}\)

\(\frac{1}{x-2002}+\frac{1}{y-2003}+\frac{1}{z-2004}=3-\frac{3}{4}=\frac{9}{4}\)

=> không có giá trị x,y,z thỏa mãn đề

25 tháng 9 2016

\(\sqrt{2003}\)+\(\sqrt{2005}\)<2\(\sqrt{2004}\)

26 tháng 9 2016

ta có :\(\left(\sqrt{2005}+\sqrt{2003}\right)^2\le\left(1^2+1^2\right)\left(2005+2003\right)=2.4008\)(bđt bu-nhia-cop xki)

\(\left(2\sqrt{2004}\right)^2=4.2004=2.4008\)

\(\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)

20 tháng 7 2018

Bài này ta dùng phương pháp trục căn thức ở mẫu 

Ta có: \(\frac{1}{a}=\frac{1}{\sqrt{2004}-\sqrt{2003}}=\frac{\sqrt{2004}+\sqrt{2003}}{\left(\sqrt{2004}-\sqrt{2003}\right)\left(\sqrt{2004}+\sqrt{2003}\right)}\)

 \(=\frac{\sqrt{2004}+\sqrt{2003}}{2004-2003}=\frac{\sqrt{2004}+\sqrt{2003}}{1}=\sqrt{2004}+\sqrt{2003}\)

Tương tự: 1/b = căn 2005 + căn 2004

Vì căn 2004 + căn 2003 < căn 2005 + căn 2004

=> căn 2004 - căn 2003 > căn 2005 - căn 2004

Vậy a > b

P/s: Bài giải còn nhiều sai sót, mong các anh chị thông cảm và sửa cho em.

14 tháng 6 2017

Ta có

\(\sqrt{2005}-\sqrt{2004}=\dfrac{1}{\sqrt{2005}+\sqrt{2004}}\)

\(\sqrt{2004}-\sqrt{2003}=\dfrac{1}{\sqrt{2004+\sqrt{2003}}}\)

Quy về so sánh

\(\dfrac{1}{\sqrt{2005}+\sqrt{2004}}\) với \(\dfrac{1}{\sqrt{2004}+\sqrt{2003}}\)

Khi đó ,ta thấy ngay ở biểu thức thứ nhất lớn hơn mẫu ở biểu thức thứ hai ,các số này đều dương nên suy ra

\(\sqrt{2005}-\sqrt{2004}< \sqrt{2004}-\sqrt{2003}\)

27 tháng 6 2017

kết quả hơi kì bạn ơi

22 tháng 10 2017

Ta có : \(\sqrt{2005}-\sqrt{2004}\) ; \(\sqrt{2004}-\sqrt{2003}\)

=> \(\sqrt{2005}>\sqrt{2004}>\sqrt{2003}\)

=> \(\sqrt{2005}-\sqrt{2004}\)\(\sqrt{2004}-\sqrt{2003}\)

13 tháng 2 2020

\(\sqrt{2005}-\sqrt{2004}=0.01116778328\)

\(\sqrt{2004}-\sqrt{2003}=0.01117057\)

\(\Rightarrow\sqrt{2005}-\sqrt{2004}>\sqrt{2004}-\sqrt{2003}\)

14 tháng 8 2016

Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) (bạn tự c/m) với a = 2003 , b = 2005

được : \(\frac{\sqrt{2003}+\sqrt{2005}}{2}< \sqrt{\frac{2003+2005}{2}}\)

\(\Rightarrow\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)

25 tháng 11 2017

a) \(\sqrt{3x-4}\) + \(\sqrt{4x+1}\) = \(-16x^2 - 8x +1\) với

ĐKXĐ :

- Vế trái \(x \ge \frac{4}{3}\)

- Vế phải : \(-16x^2 - 8x +1\) \(\ge 0\) \(\Leftrightarrow \) \(x \le \frac{\sqrt{2}-1}{4}\) hoặc \(x \le \frac{-\sqrt{2}-1}{4}\)

Hai điều kiện trái ngược nhau

Vậy phương trình vô nghiệm .

25 tháng 11 2017

Ặc sai rồi .... hiha Thông cảm

27 tháng 9 2017

cả hai bài đều giải bằng cách  bình phương cả hai vế rồi so sánh

27 tháng 9 2017

So sánh từng vế:

\(\sqrt{15}+1=4,872983346\)

\(\sqrt{24}=4,898979486\)

Vậy: \(\sqrt{15}+1< \sqrt{24}\)

\(\sqrt{2002}+\sqrt{2004}=89,50977321\)

\(2\sqrt{2005}=89,5545271\)

Vậy \(\sqrt{2002}+\sqrt{2004}< 2\sqrt{2005}\)

P/s: Ko chắc