Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = \(\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)
= \(\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}+\dfrac{1}{10\cdot11}+\dfrac{1}{11\cdot12}\)
= \(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\)
= \(\dfrac{1}{6}-\dfrac{1}{12}=\dfrac{1}{12}\)
B = \(\dfrac{\dfrac{2}{29}-\dfrac{2}{39}+\dfrac{2}{49}}{\dfrac{23}{29}-\dfrac{23}{39}+\dfrac{23}{49}}=\dfrac{2\left(\dfrac{1}{29}-\dfrac{1}{39}+\dfrac{1}{49}\right)}{23\left(\dfrac{1}{29}-\dfrac{1}{39}+\dfrac{1}{49}\right)}=\dfrac{2}{23}\)
Lại có \(\dfrac{2}{23}>\dfrac{2}{24}=\dfrac{1}{12}\) hay A < B
Vậy A < B
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) \(4.5^2-81:3^2-\left|-3\right|=4.25-81:9-3\)
\(=100-9-3\)
\(=88\)
b) Ta có: \(-105+79=-26\)
\(-12+\left(-23\right)=-35\)
Vì \(-35< -26\)nên \(-105+79>-12+\left(-23\right)\)
_Học tốt nha_