Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(B=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Vì :
\(\frac{2017}{2018}>\frac{2017}{2018+2019}\)
\(\frac{2018}{2019}>\frac{2018}{2018+2019}\)
\(\Rightarrow\)\(\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018}{2018+2019}\) hay \(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
Có: \(A=\frac{2018^{2019}+1}{2018^{2019}-2017}=\frac{2018^{2019}+1-2018+2018}{2018^{2019}-2017}=\frac{2018^{2019}-2017+2018}{2018^{2019}-2017}=1+\frac{2018}{2018^{2019}-2017}\)
\(B=\frac{2018^{2019}+2}{2018^{2019}-2016}=\frac{2018^{2019}+2-2018+2018}{2018^{2019}-2016}=\frac{2018^{2019}-2016+2018}{2018^{2019}-2016}=1+\frac{2018}{2018^{2019}-2016}\)
Mà: \(\frac{2018}{2018^{2019}-2017}>\frac{2018}{2018^{2019}-2016}\)
\(\Rightarrow1+\frac{2018}{2018^{2019}-2017}>1+\frac{2018}{2018^{2019}-2016}\\ \Rightarrow A>B\)
Trước tiên để tính diện tích hình thang chúng ta có công thức Chiều cao nhân với trung bình cộng hai cạnh đáy.
cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 2
S = h * (a+b)1/2
Trong đó
a: Cạnh đáy 1
b: Cạnh đáy 2
h: Chiều cao hạ từ cạnh đấy a xuống b hoặc ngược lại(khoảng cách giữa 2 cạnh đáy)
Ví dụ: giả sử ta có hình thang ABCD với các cạnh AB = 8, cạnh đáy CD = 13, chiều cao giữa 2 cạnh đáy là 7 thì chúng ta sẽ có phép tính diện tích hình thang là:
S(ABCD) = 7 * (8+13)/2 = 73.5
cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 3
Tương tự với trường hợp hình thang vuông có chiều cao AC = 8, cạnh AB = 10.9, cạnh CD = 13, chúng ta cũng tính như sau:
S(ABCD) = AC * (AB + CD)/2 = 8 * (10.9 + 13)/2 = 95.6
ta có A=\(\frac{2017^{2017}+1}{2017^{2018}+1}\)=> 2017A =\(\frac{2017^{2018}+2017}{2017^{2018}+1}=1+\frac{2016}{2017^{2018}+1}\)(1)
B=\(\frac{2017^{2018}+1}{2017^{2019}+1}\)=> 2017B =\(\frac{2017^{2019}+2017}{2017^{2019}+1}=1+\frac{2016}{2017^{2019}+1}\)(2)
So sánh (1)với (2) ta thấy 2017A>2017B
=>A>B
Vậy A>B
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(B=\frac{2017^{2018}+1}{2017^{2019}+1}< \frac{2017^{2018}+1+2016}{2017^{2019}+1+2016}=\frac{2017^{2018}+2017}{2017^{2017}+2017}=\frac{2017\left(2017^{2017}+1\right)}{2017\left(2017^{2016}+1\right)}=A\)
\(\Rightarrow\)\(B< A\) hay \(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
Ta có :
\(\frac{2017}{2018}>\frac{2017}{2018+2019}\)
\(\frac{2018}{2019}>\frac{2018}{2018+2019}\)
\(\Rightarrow\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
\(\Rightarrow\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018}{2018+2019}\)
\(\Rightarrow A>B\)
Chúc bạn học tốt !!!!
Vì \(\frac{2017}{2018}>\frac{2017}{2018+2019}\)
Vì \(\frac{2018}{2019}>\frac{2018}{2018+2019}\)
\(\Rightarrow\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018}{2018+2019}\)