Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có 2 tính chất sau: a^n : b^n = (a : b)^n và a^n.b^n = (a.b)^n
Ta có: a = 15^120:25^60
<=> a = (15^2)^60: 25^60
<=> a = 225^60 : 25^60
<=> a = (225 : 25)^60
<=> a = 9^60 (1)
b = (2^45)(2^15)(4^60)
<=> b = [ (2^45)(2^15) ].(4^60)
<=> b = (2^60).(4^60)
<=> b = (2.4)^(60)
<=> b = 8^60 (2)
Từ (1) và (2) => a > b
t i c k nha!! 3463565645767787980687356261356456565676578758573562656
So sánh 360 và 445
360=34.15=(34)15=8115
445=43.15=(43)15=6415
Vì 8115 > 6415
Nên 360 > 445
\(A=\dfrac{3^6\cdot3^8\cdot5^4-5^{13-9}\cdot3^{13}}{3^{12}\cdot5^6+3^{12}\cdot5^6}\)
\(=\dfrac{3^{14}\cdot5^4-5^4\cdot3^{13}}{3^{12}\cdot5^6\cdot2}\)
\(=\dfrac{3^{13}\cdot5^4\cdot2}{3^{12}\cdot5^6\cdot2}=\dfrac{3}{25}\)
\(B=\left(\dfrac{2}{5}\cdot5\right)^7+\left(\dfrac{9}{4}:\dfrac{3}{16}\right)^3=1+12^3=1729\)
\(a,\left[2^{17}+16^2\right]\cdot\left[9^{15}-3^{15}\right]\cdot\left[2^4-4^2\right]\)
\(=\left[2^{17}+16^2\right]\cdot\left[9^{15}-3^{15}\right]\cdot\left[16-16\right]\)
\(=\left[2^{17}+16^2\right]\left[9^{15}-3^{15}\right]\cdot0=0\)
\(b,\left[8^{2017}-8^{2015}\right]\cdot\left[8^{2014}\cdot8\right]\)
\(=8^{2015}\left[8^2-1\right]\cdot8^{2015}\)
\(=8^{2015}\cdot63\cdot8^{2015}=8^{4030}\cdot63\)sửa lại câu b , có vấn đề rồi
\(c,\frac{2^8+8^3}{2^5\cdot2^3}=\frac{2^8+\left[2^3\right]^3}{2^5\cdot2^3}=\frac{2^8+2^9}{2^8}=\frac{2^8\left[1+2\right]}{2^8}=3\)
2.a, \(2^6=\left[2^3\right]^2=8^2\)
Mà 8 = 8 nên 82 = 82 hay 26 = 82
b, \(5^3=5\cdot5\cdot5=125\)
\(3^5=3\cdot3\cdot3\cdot3\cdot3=243\)
Mà 125 < 243 nên 53 < 35
c, 26 = [23 ]2 = 82
Mà 8 > 6 nên 82 > 62 hay 26 > 62
d, 7200 = [72 ]100 = 49100
6300 = \(\left[6^3\right]^{100}\)= 216100
Mà 49 < 216 nên 49100 < 216100 hay 7200 < 6300
a) \(\frac{x}{15}=\frac{60}{x}\Rightarrow x^2=60.15=900\)
\(\Rightarrow x^2=900=\left(-30\right)^2=30^2\)
\(\Rightarrow\hept{\begin{cases}x=30\\x=-30\end{cases}}\)
b) \(\frac{x^2}{5}=\frac{25}{x}\Rightarrow x^3=25.5=125\)
vì x có số mũ lẻ mà giá trị là số dương nên
\(x^3=5^3\)
=> x =5
Theo đầu bài ta có:
a)\(\frac{x}{15}=\frac{60}{x}\)
\(\Rightarrow x\cdot x=60\cdot15\)
\(\Rightarrow x^2=900\)
\(\Rightarrow x=30\)
b) \(\frac{x^2}{5}=\frac{25}{x}\)
\(\Rightarrow x^2\cdot x=25\cdot5\)
\(\Rightarrow x^3=125\)
\(\Rightarrow x=5\)
\(A=2+2^2+2^3+..........+2^{60}\)
\(\Leftrightarrow A=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+.........+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(\Leftrightarrow A=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+..........+2^{57}\left(1+2+2^2+2^3\right)\)
\(\Leftrightarrow A=2.15+2^5.15+........+2^{57}.15\)
\(\Leftrightarrow A=15\left(2+2^5+......+2^{57}\right)⋮15\)
\(\Leftrightarrow A⋮15\left(đpcm\right)\)
\(A=2+2^2+2^3+...+2^{60}\)
\(\Rightarrow A=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(\Rightarrow A=2.\left(1+2+2^2+2^3\right)+2^5.\left(1+2+2^2+2^3\right)+...+2^{57}.\left(1+2+2^2+2^3\right)\)
\(\Rightarrow A=2.15+2^5.15+...+2^{57}.15\)
\(\Rightarrow A=15.\left(2+2^5+...+2^{57}\right)\)
\(\Rightarrow A⋮15\)
a=5^120
b= 8^60
vì 5^120= 25^60 >8^60
=> a>b