K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

Ta có:

\(A=\frac{2017\cdot2018-1}{2017\cdot2018-2}\)

\(A=\frac{2017\cdot2018-2+1}{2017\cdot2018-2}\)

\(A=\frac{2017\cdot2018-2}{2017\cdot2018-2}+\frac{1}{2017\cdot2018-2}\)

\(A=1+\frac{1}{2017\cdot2018-2}\)

Ta có phân số trung gian là 1. Ta có:
\(A>1\) ; \(B< 1\)

\(\Rightarrow A>1>B\)

\(\Rightarrow A>B\)

Vậy A>B
Chúc em học tốt!

22 tháng 7 2018

\(\Rightarrow\text{❤️✔✨♕✨✔️❤ }\Leftarrow\)

\(\text{Ta có :}\)

\(A=\frac{2017\cdot2018-1}{2017\cdot2018-2}=\frac{4070305}{4070304}=1\frac{1}{4070304}\)

\(B=\frac{2017}{2018}\)

\(\text{Vì : }1\frac{1}{4070304}>1\text{ mà }\frac{2017}{2018}< 1\text{ nên }1\frac{1}{4070304}>\frac{2017}{2018}\)

\(\Rightarrow A>B\)

11 tháng 6 2018

Bài 1:

Ta có:

\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)

                                                     \(\Leftrightarrow N< M\)

Vậy \(M>N.\)

Bài 2:

Ta có:

\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)

\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)

\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

                                                                     \(\Leftrightarrow A>B\)

Vậy \(A>B.\)

Bài 3:

\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)

                                                                \(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)

                                                                \(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)

Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)

\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm

\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)

Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)

Bài 4:

\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)

Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)

\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)

\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)

Vậy \(\frac{1991.1999}{1995.1995}< 1.\)

31 tháng 8 2020

\(C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(C=1-\frac{1}{2018}\)

\(C=\frac{2017}{2018}\)

31 tháng 8 2020

\(C=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+.....+\frac{1}{2017x2018}\)

Ta thấy \(\frac{1}{1x2}=\frac{1}{1}-\frac{1}{2}\)

               \(\frac{1}{2x3}=\frac{1}{2}-\frac{1}{3}\)

      .............................................

           \(\frac{1}{2017x2018}=\frac{1}{2017}-\frac{1}{2018}\)

\(\Rightarrow C=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2017}-\frac{1}{2018}\)

\(\Rightarrow C=\frac{1}{1}-\frac{1}{2018}\)

\(\Rightarrow C=\frac{2017}{2018}\)

Chúc bạn học tốt nhớ k mình nhá

29 tháng 4 2019

\(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\right)\)

\(=1+\left(1-\frac{1}{2018}\right)\)

\(=1+\left(\frac{2018}{2018}-\frac{1}{2018}\right)\)

\(=1+\left(\frac{2017}{2018}\right)\)

\(=\frac{2018}{2018}+\frac{2017}{2018}=\frac{4035}{2018}\)

1 tháng 5 2019

\(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}...+\frac{1}{2017\cdot2018}\)

\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}...+\frac{1}{2017}-\frac{1}{2018}\right)\)

\(=1+\left(1-\frac{1}{2018}\right)\)

\(=1+\frac{2017}{2018}\)

\(=1+\frac{2017}{2018}\)

\(=\frac{4035}{2018}\)

24 tháng 5 2018

Ta có :

\(\frac{2017\times2018+1}{2019+2016\times2018}\)

\(=\frac{2017\times2018+1}{1+2018+2016\times2018}\)

\(=\frac{2017\times2018+1}{1+2018\times\left(2016+1\right)}\)

\(=\frac{2017\times2018+1}{1+2018\times2017}\)

\(=1\)

24 tháng 5 2018

\(\frac{2017.2018+1}{2019+2016.2018}\)

\(=\frac{2017.2018+1}{1+2018+2016.2018}\)

\(=\frac{2017.(2018+1)}{(1+2018).\left(2016+1\right)}\)

\(=\frac{2017.2019}{2019.2017}\)

\(=\frac{1}{1}=1\)

25 tháng 3 2019

các bạn hãy trả lời nhanh cho mình với nhé

25 tháng 3 2019

a) 2018 x 2019 - 2017  = 2017 = 1                                                        b) 2018 x 2018            = 2018 x 2018 = 2018

     2017 x 2018  + 2019   2017                                                                  (2017 + 1) x 2019       2018 x 2019     2019

chúc bạn hok tốt

24 tháng 5 2017

Gọi B = 1x2 + 2 x 3 + 3 x 4 + ... + 2016 x2017

    3B = 3 x ( 1x2 + 2x3 + 3x4 + ... + 2016x2017)

         = 1x2x3 + 2x3x3 + 3x4x3 + ... + 2016x2017x3 )

         = 1x2x3 + 2x3x( 4-1) + 3x4x( 5 -2 ) + ... + 2016x2017x( 2018 - 2015)

         = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + ... + 2016x2017x2018 - 2015x2016x2017

         = 2016 x2017 x2018

      B = 672 x2017 x2018

Mà A = \(\frac{672x2017x2018}{2017x2018}\)

         =  672

Vậy A = 672

19 tháng 7 2018

a) ta có: \(A=\frac{2017.2018-1}{2017.2018}=\frac{2017.2018}{2017.2018}-\frac{1}{2017.2018}=1-\frac{1}{2017.2018}\)

\(B=\frac{2018.2019-1}{2018.2019}=1-\frac{1}{2018.2019}\)

\(\Rightarrow\frac{1}{2017.2018}>\frac{1}{2018.2019}\)

\(\Rightarrow1-\frac{1}{2017.2018}< 1-\frac{1}{2018.2019}\)

=> A < B

19 tháng 7 2018

a)A= 2017*2018/2017*2018-1/2017*2018=1-1/2017*2018

    B = 2018*2019/2018*2019-1/2018*2019=1-1/2018*2019

vì 1/2017*2018>1/2018*2019=> A<B

b)

4 tháng 7 2018

Ta có:

\(\frac{63}{64}=\frac{63.2018}{64.2018}=\frac{127134}{129152}\)

\(\frac{2017}{2018}=\frac{2017.64}{2018.64}=\frac{129088}{129152}\)

Vậy \(\frac{63}{64}< \frac{2017}{2018}\)

4 tháng 7 2018

Ta có 1 - 63/64=1/64

         1 - 2017/2018=1/2018

(Ta so sánh phần tử số)

Vì 1/64>1/2018 nên 63/64>2017/2018