Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) |3 + 17| với |3| + |17|
|3 + 17| =20 ; |3| + 17| = 20
Vậy giá trị tuyệt đối của một số nguyên dương bằng tổng các giá trị tuyệt đối của mỗi số
b) |-3 + (-17)| với |-3| + |-17|
|-3 + (-17)| = 20 ; |-3| + |-17| = 20
Vậy giá trị tuyệt đối của một số nguyên âm bằng tổng các giá trị tuyệt đối của mỗi số
Ta có : \(17^{17}-2< 17^{18}-2\)
Mà mẫu số càng lớn thì p/s càng bé
\(\Rightarrow\)\(\frac{2}{17^{17}-2}< \frac{2}{17^{18}-2}\)
Lại có :\(17^{18}< 17^{19}\)
\(\Rightarrow\)\(17^{18}-\frac{2}{17^{17}-2}< 17^{19}-\frac{2}{17^{18}-2}\)\(17^{18}-\frac{2}{17^{17}-2}< 17^{19}-\frac{2}{17^{18}-2}\)\(17^{18}-\frac{2}{17^{17}-2}< 17^{19}-\frac{2}{17^{18}-2}\)\(17^{18}-\frac{2}{17^{17}-2}< 17^{19}-\frac{2}{17^{18}-2}\)\(17^{18}-\frac{2}{17^{17}-2}< 17^{19}-\frac{2}{17^{18}-2}\)( Vì số bị trừ càng lớn thì hiệu càng bé )
a)3200=(32)100=9100
2300=(23)100=8100
vì 9>8 nên 9100>8100
hay 3200>2300
b)\(A=\frac{121212}{171717}+\frac{2}{17}-\frac{404}{1717}=\frac{12.10101}{17.10101}+\frac{2}{17}-\frac{4.101}{17.101}=\frac{12}{17}+\frac{2}{17}-\frac{4}{17}\)
\(=\frac{10}{17}=B\)
Vậy A=B
a) Ta có: 3200 = ( 32 )100 = 9100
2300 = ( 23 )100 = 8100
Vì 9 > 8 nên 9100 > 8100.
Vậy 3200 > 2300
b) \(A=\frac{121212}{171717}+\frac{2}{17}-\frac{404}{1717}=\frac{12}{17}+\frac{2}{17}-\frac{4}{17}=\frac{12+2-4}{17}=\frac{10}{17}=B\)
Vậy A = B
a) (-13).5 < 0
b) 200 > 200 . (-3)
c) (-17) . 2 < -17
d) (-11) . 8 < -11.
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(A=\frac{17^{18}-2}{17^{19}-2}< \frac{17^{18}-2-32}{17^{19}-2-32}=\frac{17^{18}-34}{17^{19}-34}=\frac{17\left(17^{17}-2\right)}{17\left(17^{18}-2\right)}=\frac{17^{17}-2}{17^{18}-2}=B\)
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
Công thức: \(\frac{a}{b}< \frac{a+c}{b+c}\left(\frac{a}{b}< 1;a;b;c\inℕ^∗\right)\)
Ta có:
\(A=\frac{17^{18}-2}{17^{19}-2}< B=\frac{17^{17}-2-32}{17^{18}-2-32}=\frac{17^{17}-34}{17^{18}-34}=\frac{17\left(17^{17}-2\right)}{17\left(17^{18}-2\right)}=\frac{17^{17}-2}{17^{18}-2}\)
Từ đó ta kết luận A < B
(-17) . 2 < -17