Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(n^2+n+4\right)⋮n+1\)
\(\Rightarrow n.n+n+4⋮n+1\)
\(\Rightarrow n.\left(n+1\right)+4⋮n+1\)
Vì n(n + 1) \(⋮\)n+ 1 nên 4 \(⋮\)n + 1
=> n \(\in\)Ư(4) = {1;2;4}
ta có: n2 + n + 4 chia hết cho n+1
=> n .( n+1) +4 chia hết cho n+1
mà n.(n+1) chia hết cho n+1
=> 4 chia hết cho n+1
\(\Rightarrow n+1\inƯ_{\left(4\right)}=\left(1;-1;2;-2;4;-4\right)\)
nếu n+1 = 1 => n = 0 (TM)
n+1= -1 => n= -2 ( Loại)
n+1 = 2=> n = 1 ( TM)
n+1 = -2 => n = - 3 (Loại)
n+1= 4 => n = 3 ( TM)
n+1 = -4 => n= - 5 ( Loại)
=> n thuộc ( 0;1;3)
=> có 3 phần tử của tập hợp các số tự nhiên n
A=n2+n+n+1+3=n(n+1)+(n+1)+3=(n+1)(n+1)+3=(n+1)2+3
=> để A chia hết cho n+1 thì 3 phải chia hết cho n+1
=> n+1={1; 3}
=> n={0, 2}
n2 + n + 4 chia hết cho n+1
n(n+1) +4 chia hết cho n+1
mà n(n+1) chia hết cho n+1
<=> 4 chia hết cho n+1
n+1 thuộc Ư(4) = {1 ; 2 ;4}
n+1 = 1 => n = 0
n+1 = 2 => n = 1
n+1 = 4 => n = 3
Vậy n thuộc { 0; 1 ; 3 }
Đúng thì k cho mik vs nha
ta có: n2+n+4 \(⋮\)n+1
=>n.n+n+4 \(⋮\)n+1
=>n(n+1)+(n+1)-3+3\(⋮\)n+1
=>n-3 \(⋮\)n+1 ( vì n(n+1) và n+1 \(⋮\)n+1)
=>(n+1)-4 \(⋮\)n+1
=>4 \(⋮\)n+1 (vì n+1 chia hết cho n+1)
=> n+1\(\in\)Ư(4)={1;2;4}
=> n \(\in\){0;1;3}
vậy n \(\in\){0;1;3}
có phải bài này tong violympic lớp 6 phải không? tk cho mình nha....
Ta có:
(16 + 7n) ⋮ (n + 1)
[9 + 7(n + 1)] ⋮ (n + 1)
Suy ra: 9 ⋮ (n + 1)
Suy ra: (n + 1) ∈ Ư(9)
Ta có: Ư(11) = {-9;-3;-1;1;3;11}
Suy ra: a = {-10;-4;-2; 0;2;8}
Vì n là số tự nhiên, suy ra: n = {0;2;8}
( n2 + n + 4 ) chia hết cho n + 1
=>n2+n+4=n.(n+1)+4
=>n.(n+1)+4 chia hết cho n+1
=>n.(n+1) chia hết cho n+1
mà 4 chia hết cho 1;2;4
n+1 | 1 | 2 | 4 |
n | 0 | 1 | 3 |
kết luận | thỏa mãn | thỏa mãn | thỏa mãn |
=>n=0;1;3
=> tập hợp các STN n là: {0;1;3}
=> Số phần tử của tập hợp các STN n là 3 p/tử
vậy...
n2+n+4 chia het cho n+1 ta co:
n2+n+4
= n.n+n+4
=n . ( n+1) +4
vi : n. ( n+1) chia het cho n+1
\(\Rightarrow\)4chia het cho n+1
n+1 E U(4) = { 1;2;4}
n+1 = 1\(\Rightarrow\)n= 1-1 =0
n+1 =2\(\Rightarrow\)n =2-1=1
n+1 =4\(\Rightarrow\)n= 4-1 = 3
vay n E {0;1;3}
tick minh nha
Ta co: n^2+n+4= n(n+1) + 4
Vi n(n+1) chia het cho n+1 suy ra 4 chia het cho n+1
suy ra n+1 thuộc Ư(4) = 1;2;4
n = 0;1;3
Vậy n có thể có 3 phần tử.
(n^3+1)+(n+1)+2
=> n={0,1}
DS: 2