K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2016

n2006<72007=72006.7

=>n2006:72006<7

=>(n:7)2006<7

n thuộc Z=> n:7 cũng thuộc Z

=> n:7 có thể nhận các giá trị: 0;1;2;3;4;5;6 hoặc -1;-2;-3;-4;-5;-6

với n:7=0=>n=0 và 02006=0<7

với n:7=1=>n=7 hoặc n:7=-1=>n=-7và 12006=1<7

với n:7=2=>n=14 hoặc n:7=-2=>n=-14 và 142006=22006.72006 =16.22002 .72006<7  mà 72006>7 , 16.22002>7

=> 142006>7 (*)

mà theo đề thì nếu n=2 hay n=-2 thì (n:7)2006<7 hay 142006<7  điều này trái với (*)

=> n phải nhỏ hơn 2 và lớn hơn -2

số lớn nhất thoả mãn -2<n<2 là 1 và khi n=1 thì 12006<72007 và thoả mãn đề bài

n2006<72006.7

=> nếu n=7 thì 72006<72006.7 điều này hoàn toàn hợp lí

nếu n=8 

82006<72006.7........

23 tháng 4 2018

Ta có: \((a^{2007}+b^{2007})\left(a+b\right)-\left(a^{2006}+b^{2006}\right)ab\)

\(=\left(a^{2008}+a^{2007}b+ab^{2007}+b^{2008}\right)-\left(a^{2007}b+ab^{2007}\right)\)

\(=a^{2008}+b^{2008}\)

Mà: \(a^{2006}+b^{2006}=a^{2007}+b^{2007}=a^{2008}+b^{2008}\)    ( * )

\(\Rightarrow\left(a^{2008}+b^{2008}\right)\left(a+b\right)-\left(a^{2008}+b^{2008}\right)ab=a^{2008}+b^{2008}\)

\(\Leftrightarrow\left(a^{2008}+b^{2008}\right)\left(a+b-ab\right)=a^{2008}+b^{2008}\)

\(\Leftrightarrow a+b-ab=1\)

\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}\)

thay vào (*) ta tính dc: 

a=1 thì\(\orbr{\begin{cases}b=1\\b=0\end{cases}}\)                   b=1 thì \(\orbr{\begin{cases}a=1\\a=0\end{cases}}\)

mặt khác a, b dương => a=1, b=1

Khi đó:   \(a^{2009}+b^{2009}=1+1=2\)

Ta có : \(a^{2006}+b^{2016}=a^{2007}+b^{2007}=a^{2008}+b^{2008}\)

\(\Leftrightarrow\orbr{\begin{cases}a^{2006}+b^{2006}-\left(a^{2007}+a^{2007}\right)=0\left(1\right)\\a^{2008}+b^{2008}-\left(a^{2007}+b^{2007}\right)=0\left(2\right)\end{cases}}\) 

Cộng (1) với (2)  => \(a^{2008}+b^{2008}-2\left(a^{2007}+b^{2007}\right)+a^{2006}+b^{2006}=0\)

\(\Leftrightarrow a^{2008}-2a^{2007}+a^{2006}+b^{2008}-2b^{2007}+b^{2006}\)

\(\Leftrightarrow a^{2006}\left(a^2-2a+1\right)+b^{2006}\left(b^2-2b+1\right)=0\)

\(\Leftrightarrow a^{2006}\left(a-1\right)^2+b^{2006}\left(b-1\right)^2=0\) (*) 

Vì a , b > 0 và : \(\left(a-1\right)^2\ge0\forall a\) ; \(\left(b-1\right)^2\ge0\forall b\)

Nên : phương trình (*) <=> \(\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\end{cases}\Leftrightarrow a=b=1}}\)

Vậy \(S=a^{2009}+b^{2009}=1+1=2\)

30 tháng 5 2020

TH1) Với n = 6k

ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+1\right)\left(12k+1\right)\) không chia hết cho 6 

=> Loại 

TH2) Với n = 6k+1 

ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+2\right)\left(12k+3\right)⋮6\)

=> \(A=\frac{\left(6k+2\right)\left(12k+3\right)}{6}=\left(3k+1\right)\left(4k+1\right)\)là số chính phương 

Lại có: ( 3k + 1 ; 4k + 1 ) = ( 3k + 1 ; k ) = ( 2k + 1 ; k ) = ( k + 1 ; k ) = ( k ; 1 ) = 1 

=> 3k + 1 và 4k + 1 đồng thời là 2 số chính phương 

+) Với k \(\equiv\)\(1,3,5,7\)(mod 8 ) => 4k + 1 không là số cp

+) Với k \(\equiv\)2; 4; 6 ( mod 8) => 3k + 1 không là số chính phương 

=> k \(\equiv\)0 ( mod 8) => k = 8h

=> Tìm h bé nhất để 24h + 1 và 32h + 1 là số chính phương(1)

+) Với h \(\equiv\)\(3,4,6\)( mod7) => 24k + 1 không là số chính phương 

+) Với h \(\equiv\)1  (mod 7 ) => 32h + 1 không là số cp 

=> h \(\equiv\)0; 2; 5 (mod 7 ) 

=> h = 7m hoặc h = 7n + 2 hoặc h = 7t + 7  ( với m;n; t nguyên dương )

Nếu m = 1 => h = 7 => 24h + 1 = 169 và 32h + 1 = 225 là hai số chính phương và h nhỏ nhất 

=> n = 6k + 1 và k = 8h = 56 

=> n = 337

=> A = 38025 là số chính phương

TH3) Với n = 6k + 2 

ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+3\right)\left(12k+5\right)\)không chia hết cho 6

TH4) Với n = 6k + 3

ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+4\right)\left(12k+7\right)\)không chia hết cho 6 

TH5) Với n = 6k + 4 

ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+5\right)\left(12k+9\right)\)không chia hết cho 6

TH6) Với n = 6k + 5 

ta có \(\left(n+1\right)\left(2n+1\right)=\left(6k+6\right)\left(12k+11\right)⋮6\)

=> \(A=\frac{\left(6k+6\right)\left(12k+11\right)}{6}=\left(k+1\right)\left(12k+11\right)\)

mà ( k + 1; 12k + 11 ) = 1 

=> k + 1 và 12k + 11 là 2 số chính phương 

tuy nhiên 12k + 11 chia 12 dư 11 mà 1 số chính phương chia 12 không dư 11 

=> Trường hợp này loại 

Vậy  n = 337 

27 tháng 3 2020

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

27 tháng 3 2020

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)

a: =>0,3x>-0,5-5,2=-5,7

hay x>19

b: =>1,2-2,1+0,2x<4,4

=>0,2x-0,9<4,4

=>0,2x<5,3

hay x<26,5

28 tháng 3 2018

4.Nếu\(|x-1|=0\)

thì x = 1.=> lx+2l = 3 và lx+3l = 4.

=>lx-1l+lx+2l+lx+3l=0+3+4=7.

Nếu \(|x+2|=0\)

thì x=-2 =>lx-1l=3 và lx+3l=1.

=>lx-1l+lx+2l+lx+3l=0+3+1=4.

Nếu \(|x+3|=0\)

thì x=-3 =>lx-1l=4 và lx+2l=1.

=>lx-1l+lx+2l+lx+3l=5.

Vậy \(Min_{\text{lx-1l+lx+2l+lx+3l}}=4\).

a, x2+5y2+2y-4xy-3=0

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Nếu \(y< -3\Rightarrow y+1< -2\Rightarrow\left(y+1\right)^2>4\Rightarrow VT>VP\)(vô lí)

\(\Rightarrow y\ge-3\Rightarrow y_{min}=-3\)

lúc đó \(\left(x+6\right)^2+4=4\Rightarrow x=-6\)

Vậy.................

5 tháng 3 2020

a) \(x^2+5y^2+2y-4xy-3=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Ta thấy : \(4=0+4\) là tổng hai số chính phương

Thử các giá trị \(\orbr{\begin{cases}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{cases}}\)

Ta thấy : \(y=-3\) đạt giá trị nhỏ nhất.

Khi đó : \(x^2+5.\left(-3\right)^2+2\left(-3\right)-4x\left(-3\right)-3=0\)

\(\Leftrightarrow x=-6\)

Vậy : \(\left(x,y\right)=\left(-6,-3\right)\) với y nhỏ nhất thỏa mãn đề.

P/s : Không chắc lắm ....