Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số hữu tỉ dương: \(\frac{-3}{-5};\frac{2}{3}\)
Số hữu tỉ âm: \(\frac{-3}{7};\frac{1}{-5}\)
Số không phải là số hữu tỉ âm mà cũng không phải là số hữu tỉ âm: \(\frac{0}{-2}\)
a) Chứng minh phản chứng: Giả sử tổng đó là số hữu tỉ
=> Số hạng vô tỉ = Số hữu tỉ - Số hữu tỉ => Số vô tỉ = Số hữu tỉ => Mâu thuẫn
Vậy tổgg só là số vô tỉ
X = - \(\dfrac{101}{a+7}\) (a ≠ - 7)
X \(\in\) Z ⇔ -101 ⋮ a + 7 ⇒ a + 7 \(\in\) Ư(101) = {-101; -1; 1; 101}
Lập bảng ta có:
a + 7 | - 101 | -1 | 1 | 101 |
a | -108 | -8 | -6 | 94 |
Theo bảng trên ta có: a \(\in\) {-108; -8; -6; 94}
Vậy a \(\in\) {-108; -8; -6; 94}
Ta có:
\(P\left(1\right)=a+b+c\)
\(P\left(4\right)=16a+4b+c\)
\(P\left(9\right)=81a+9b+c\)
Vì P(1); P(4) là số hữu tỉ nên \(P\left(4\right)-P\left(1\right)=15a+3b=3\left(5a+b\right)\)là số hữu tỉ
=> \(5a+b\)là số hữu tỉ (1)
Vì P(1); P(9) là số hữu tỉ nên \(P\left(9\right)-P\left(1\right)=80a+8b=8\left(10a+b\right)\)là số hữu tỉ
=> \(10a+b\)là số hữu tỉ (2)
Từ (1), (2) => \(\left(10a+b\right)-\left(5a+b\right)=10a+b-5a-b=5a\)là số hữu tỉ
=> a là số hữu tỉ
Từ (1)=> b là số hữu tỉ
=> c là số hữu tỉ
a, Tích của 2 số hữu tỉ
\(\frac{7}{20}\cdot\left(-1\right)=-\frac{7}{20}\)
b, Thương của 2 số hữu tỉ
\(1:-\frac{20}{7}=1\cdot-\frac{7}{20}=-\frac{7}{20}\)
c, Tổng của 1 số hữu tỉ dương và 1 số hữu tỉ âm
\(\frac{3}{5}+\frac{-19}{20}=\frac{12}{20}+\frac{-19}{20}=-\frac{7}{20}\)
d, Tổng của 2 số hữu tỉ âm trong đó 1 số là - 1/5
\(-\frac{1}{5}+\frac{-3}{20}=\frac{-4}{20}+\frac{-3}{20}=-\frac{7}{20}\)
Số hữu tỉ âm nhỏ nhất được viết bằng 3 chữ số 1 là \(-\frac{1}{11}\)
Số hữu tỉ âm lớn nhất đưuọc viết bằng 3 chữ số 1 là \(-1,11\)
Tỉ số của A và B là \(-\frac{1}{11}:\left(-1,11\right)=\frac{100}{1221}\)
Tỉ số A vs B là :
\(-\frac{1}{11}:\left(-1,11\right)=\frac{100}{1221}\)
Đáp số : 100/1221
Số nguyên a là số hữu tỉ. Vì với số nguyên a ta đều có thể viết: a = \(\frac{a}{1}\)
Tập hợp các số nguyên Z thuộc tập hợp các số hữu tỉ Q.
Số nguyên a nằm trong tập hợp các số nguyên Z thì cũng thuộc tập hợp các số hữu tỉ Q.
Kết luận: Số nguyên a cũng là số hữu tỉ