K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 3 2020

a/ \(log_2\left(2+a\right)=3\Rightarrow2+a=8\Rightarrow a=6\)

b/ Đặt \(\left(2+\sqrt{3}\right)^x=t>0\)

\(\Rightarrow t^2+t=6\Leftrightarrow t^2+t-6=0\Rightarrow\left[{}\begin{matrix}t=-3\left(l\right)\\t=2\end{matrix}\right.\)

\(\Rightarrow\left(2+\sqrt{3}\right)^x=2\Rightarrow x=log_{2+\sqrt{3}}2\)

c/ Đặt \(2^x=t>0\)

\(t^2-5t+4=0\Rightarrow\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2^x=1\\2^x=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

26 tháng 11 2018

\(\log_3\left(x^2-6\right)=\log_3\left(x-2\right)+\log_33\)
\(\log_3\left(x^2-6\right)=\log_3\left[3\left(x-2\right)\right]\)
\(x^2-6=3x-6\)
\(\left\{{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)

NV
9 tháng 6 2019

\(m.3^{x^2-3x+2}+3^{4-x^2}=3^{6-3x}+m\)

\(\Leftrightarrow m.3^{x^2-3x+2}+3^{6-3x-\left(x^2-3x+2\right)}=3^{6-3x}+m\)

Đặt \(\left\{{}\begin{matrix}x^2-3x+2=a\\6-3x=b\end{matrix}\right.\)

\(m.3^a+3^{b-a}=3^b+m\Leftrightarrow m\left(3^a-1\right)=3^b-3^{b-a}\)

\(\Leftrightarrow m.\left(3^a-1\right)=3^{b-a}\left(3^a-1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3^a-1=0\\m=3^{b-a}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3^{x^2-3x+2}=1\\3^{4-x^2}=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\3^{4-x^2}=m\end{matrix}\right.\)

Để pt có đúng 3 nghiệm thực thì \(3^{4-x^2}=m\) có nghiệm duy nhất hoặc có 1 nghiệm bằng 1 hoặc 2.

- Nếu \(x=1\Rightarrow m=3^3=27\)

- Nếu \(x=2\Rightarrow m=3^0=1\)

Xét hàm \(f\left(x\right)=3^{4-x^2}\Rightarrow f'\left(x\right)=-2x.3^{4-x^2}.ln3\)

\(\Rightarrow f\left(x\right)\) đồng biến khi \(x< 0\), nghịch biến khi \(x>0\)

\(\Rightarrow\) Phương trình có nghiệm duy nhất khi \(x=0\Rightarrow m=3^4=81\)

\(\Rightarrow m=\left\{1;27;81\right\}\)

1 tập nghiệm S của bất pt \(4^{x+\frac{1}{2}}-5.2^x+2\le0\) A S=\(\left\{-1;1\right\}\) B=[-1;1] C S= \(\) ( \(-\infty;-1\)] \(\cup\) [\(1;+\infty\) ) D S=(-1;1) 2 Tập nghiệm của bất pt \(log_6\left[x.\left(5-x\right)\right]< 1\) A (0;2)\(\cup\) (3;5) B (2;3) C (0;5)\\(\left\{2;3\right\}\) D (0;3) \(\cup\) (3;5) 3 tập nghiệm của bất pt...
Đọc tiếp

1 tập nghiệm S của bất pt \(4^{x+\frac{1}{2}}-5.2^x+2\le0\)

A S=\(\left\{-1;1\right\}\) B=[-1;1] C S= \(\) ( \(-\infty;-1\)] \(\cup\) [\(1;+\infty\) ) D S=(-1;1)

2 Tập nghiệm của bất pt \(log_6\left[x.\left(5-x\right)\right]< 1\)

A (0;2)\(\cup\) (3;5) B (2;3) C (0;5)\\(\left\{2;3\right\}\) D (0;3) \(\cup\) (3;5)

3 tập nghiệm của bất pt \(\left(\sqrt{6}-\sqrt{5}\right)^{x-1}\ge\left(\sqrt{6}+\sqrt{5}\right)^{2x-5}\)

4 tập nghiệm của bất pt \(\left(\frac{1}{3}\right)^{\sqrt{x+2}}>3^{-x}\)

A (2;+\(\infty\)) B (1;2) C (1;2] D [2;\(+\infty\) )

5 Giai bất pt \(\left(\frac{3}{4}\right)^{2x-1}\le\left(\frac{4}{3}\right)^{-2x+x}\)

A X\(\ge\)1 B X<1 C X\(\le\) 1 D x>1

6 bất pt \(log_4\left(x+7\right)>log_2\left(x+1\right)\) có tập nghiệm là

A (5;\(+\infty\) ) B (-1;2) C (2;4) D (-3;2)

7 Tìm số nghiệm nguyên dương của bất pt \(\left(\frac{1}{5}\right)^{x^2-2x}\ge\frac{1}{125}\)

8 f(x)=\(x.e^{-3x}\) . tập nghiệm của bất pt \(f^,\) (x)>0

A (0;1/3) B (0;1) C \(\left(\frac{1}{3};+\infty\right)\) D \(\left(-\infty;\frac{1}{3}\right)\)

9 biết S =[a,b] là tập nghiệm của bất pt \(3.9^x-10.3^x+3\le0\) . Tìm T=b-a

10 TẬP nghiệm của bất pt \(log_{\frac{1}{3}}\frac{1-2x}{x}>0\)

11 có bao nhiêu nghiệm âm lớn hơn -2021 của bất pt \(\left(2-\sqrt{3}\right)^x>\left(2+\sqrt{3}\right)^{x+2}\)

A 2019 B 2020 C 2021 D 2018

12 Biết tập nghiệm S của bất pt \(log_{\frac{\pi}{6}}\left[log_3\left(x-2\right)\right]>0\) là khoảng (a,b) . Tính b-a

13 tập nghiệm của bất pt \(16^x-5.4^x+4\ge0\)

14 nếu \(log_ab=p\)\(log_aa^2.b^4\)bằng

A 4p+2 B 4p+2a c \(a^2+p^4\) D \(p^4+2a\)

15 cho a,b là số thực dương khác 1 thỏa \(log_{a^2}b+log_{b^2}a=1\) mệnh đề nào đúng

A a=\(\frac{1}{b}\) B a=b C a=\(\frac{1}{b^2}\) D a=\(b^2\)

16 đặt \(2^a=\)3 , khi đó \(log_3\sqrt[3]{16}\) bằng

6
NV
2 tháng 7 2020

14.

\(log_aa^2b^4=log_aa^2+log_ab^4=2+4log_ab=2+4p\)

15.

\(\frac{1}{2}log_ab+\frac{1}{2}log_ba=1\)

\(\Leftrightarrow log_ab+\frac{1}{log_ab}=2\)

\(\Leftrightarrow log_a^2b-2log_ab+1=0\)

\(\Leftrightarrow\left(log_ab-1\right)^2=0\)

\(\Rightarrow log_ab=1\Rightarrow a=b\)

16.

\(2^a=3\Rightarrow log_32^a=1\Rightarrow log_32=\frac{1}{a}\)

\(log_3\sqrt[3]{16}=log_32^{\frac{4}{3}}=\frac{4}{3}log_32=\frac{4}{3a}\)

NV
2 tháng 7 2020

11.

\(\Leftrightarrow1>\left(2+\sqrt{3}\right)^x\left(2+\sqrt{3}\right)^{x+2}\)

\(\Leftrightarrow\left(2+\sqrt{3}\right)^{2x+2}< 1\)

\(\Leftrightarrow2x+2< 0\Rightarrow x< -1\)

\(\Rightarrow\)\(-2+2020+1=2019\) nghiệm

12.

\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\0< log_3\left(x-2\right)< 1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\1< x-2< 3\end{matrix}\right.\)

\(\Rightarrow3< x< 5\Rightarrow b-a=2\)

13.

\(4^x=t>0\Rightarrow t^2-5t+4\ge0\)

\(\Rightarrow\left[{}\begin{matrix}t\le1\\t\ge4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4^x\le1\\4^x\ge4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\le0\\x\ge1\end{matrix}\right.\)

13 tháng 11 2018

\(2^{2+x}-2^{2-x}=15\)

\(\Leftrightarrow2^2.2^x-2^2.2^{\left(-x\right)}=15\)

\(\Leftrightarrow4.2^x-4.\dfrac{1}{2^x}=15\)

Đặt 2x = t (t>0) phương trình thành

\(4t-4.\dfrac{1}{t}=15\Leftrightarrow4\left(t-\dfrac{1}{t}\right)=15\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{\sqrt{19}}{2}\\t=\dfrac{-\sqrt{19}}{2}\end{matrix}\right.\)

\(t=\dfrac{-\sqrt{19}}{2}< 0\)(loại)

Với \(t=\dfrac{\sqrt{19}}{2}\Rightarrow2^x=\dfrac{\sqrt{19}}{2}\)\(\Leftrightarrow x=\log_2\dfrac{\sqrt{19}}{2}\)

vậy pt trên có 1 nghiệm là \(x=\log_2\dfrac{\sqrt{19}}{2}\)

Chúc bạn học tốt

28 tháng 10 2020

2.