K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 11 2019

a/ \(x^2-2x-3=-m\)

Đặt \(f\left(x\right)=x^2-2x-3\)

\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=-4\) ; \(f\left(-1\right)=0\) ; \(f\left(3\right)=0\)

\(\Rightarrow\) Để pt có nghiệm trên khoảng đã cho thì \(-4\le-m\le0\Rightarrow0\le m\le4\)

b/ \(-x^2+2mx-m+1=0\)

\(\Delta'=m^2+m-1\ge0\Rightarrow\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)

Để pt có 2 nghiệm đều âm

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m< 0\\x_1x_2=m-1>0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

Vậy pt luôn có ít nhất 1 nghiệm \(x\ge0\) với \(\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)

NV
11 tháng 11 2019

c/ \(f\left(x\right)=2x^2-x-1=m\)

Xét hàm \(f\left(x\right)=2x^2-x-1\) trên \(\left[-2;1\right]\)

\(-\frac{b}{2a}=\frac{1}{4}\) ; \(f\left(\frac{1}{4}\right)=-\frac{9}{8}\) ; \(f\left(-2\right)=9\); \(f\left(1\right)=0\)

\(\Rightarrow\) Để pt có 2 nghiệm pb thuộc đoạn đã cho thì \(-\frac{9}{8}< m\le0\)

d/ \(f\left(x\right)=x^2-2x+1=m\)

Xét \(f\left(x\right)\) trên \((0;2]\)

\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=1\); \(f\left(2\right)=1\)

Để pt có nghiệm duy nhất trên khoảng đã cho \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

e/ ĐKXĐ: \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge-3\\x\le-4\end{matrix}\right.\\x\ge m\end{matrix}\right.\)

\(x^2+4x+3=x-m\)

\(\Leftrightarrow f\left(x\right)=x^2+3x+3=-m\)

Xét hàm \(f\left(x\right)\)

\(-\frac{b}{2a}=-\frac{3}{2}\) ; \(f\left(-\frac{3}{2}\right)=\frac{3}{4}\); \(f\left(-3\right)=3\); \(f\left(-4\right)=7\)

Để pt có 2 nghiệm thỏa mãn \(x\notin\left(-4;-3\right)\) thì \(\left[{}\begin{matrix}\frac{3}{4}< m\le3\\m\ge7\end{matrix}\right.\) (1)

Mặt khác \(x^2+3x+m+3=0\)

Để pt có 2 nghiệm thỏa mãn \(m\le x_1< x_2\) thì:

\(\left\{{}\begin{matrix}f\left(m\right)\ge0\\x_1+x_2>2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2+4m+3\ge0\\2m< -3\end{matrix}\right.\) \(\Rightarrow m\le-3\) (2)

Từ (1) và (2) suy ra ko tồn tại m thỏa mãn

NV
22 tháng 10 2020

a.

ĐKXĐ: \(-4\le x\le2\)

Đặt \(\sqrt{-x^2-2x+8}=t\ge0\)

Do \(\sqrt{-x^2-2x+8}=\sqrt{-\left(x+1\right)^2+9}\le\sqrt{9}=3\)

\(\Rightarrow0\le t\le3\)

Khi đó pt trở thành:

\(8-t^2-4t-m=0\)

\(\Leftrightarrow m=-t^2-4t+8\) (1)

Xét hàm \(f\left(t\right)=-t^2-4t+8\) trên \(\left[0;3\right]\)

\(-\frac{b}{2a}=-2\notin\left[0;3\right]\) ; \(f\left(0\right)=8\) ; \(f\left(3\right)=-13\)

\(\Rightarrow-13\le f\left(t\right)\le8\) ; \(\forall t\in\left[0;3\right]\)

\(\Rightarrow\left(1\right)\) có nghiệm khi và chỉ khi \(-13\le m\le8\)

NV
22 tháng 10 2020

b.

ĐKXĐ: \(-3\le x\le1\)

Đặt \(\sqrt{x+3}+\sqrt{1-x}=t\)

\(\Rightarrow t^2=4+2\sqrt{-x^2-2x+3}\Rightarrow-\sqrt{-x^2-2x+3}=\frac{4-t^2}{2}\)

Ta có:

\(\sqrt{x+3}+\sqrt{1-x}\ge\sqrt{x+3+1-x}=2\Rightarrow t\ge2\)

\(\sqrt{x+3}+\sqrt{1-x}\le\sqrt{2\left(x+3+1-x\right)}=2\sqrt{2}\)

\(\Rightarrow2\le t\le2\sqrt{2}\)

Pt đã cho trở thành:

\(2t+\frac{4-t^2}{2}+m-3=0\)

\(\Leftrightarrow\frac{1}{2}t^2-2t+1=m\) (1)

Xét hàm \(f\left(t\right)=\frac{1}{2}t^2-2t+1\) trên \(\left[2;2\sqrt{2}\right]\)

\(-\frac{b}{2a}=2\in\left[2;2\sqrt{2}\right]\) ; \(f\left(2\right)=-1\) ; \(f\left(2\sqrt{2}\right)=5-4\sqrt{2}\)

\(\Rightarrow-1\le f\left(t\right)\le5-4\sqrt{2}\) ; \(\forall t\in\left[2;2\sqrt{2}\right]\)

\(\Leftrightarrow\left(1\right)\) có nghiệm khi và chỉ khi \(-1\le m\le5-4\sqrt{2}\)

21 tháng 11 2019

a)Điều kiện: \(x\ge\frac{3}{2}\)

Phương trình đã cho tương đương với:

\(\frac{\left(3x-2\right)-\left(x+1\right)}{\sqrt{3x-2}+\sqrt{x+1}}=\left(2x-3\right)\left(x+1\right)\Leftrightarrow\frac{2x-3}{\sqrt{3x-2}+\sqrt{x+1}}=\left(2x-3\right)\left(x+1\right)\)

Chú ý rằng \(\sqrt{3x-2}+\sqrt{x+1}\ge\sqrt{x+1}>1\), do đó

\(\frac{1}{\sqrt{3x-2}+\sqrt{x+1}}< 1\)

Trong khi đó \(x+1>1\) nên phương trình có nghiệm duy nhất là \(x=\frac{3}{2}\)

NV
21 tháng 11 2019

\(\Leftrightarrow\sqrt{3m-2x}=2x+2\) (\(x\ge-1\))

\(\Leftrightarrow3m-2x=\left(2x+2\right)^2\)

\(\Leftrightarrow4x^2+10x+4=3m\)

Đặt \(f\left(x\right)=4x^2+10x+4\), xét \(f\left(x\right)\) trên \([-1;+\infty)\)

\(a=4>0\); \(-\frac{b}{2a}=-\frac{5}{4}< -1\Rightarrow f\left(x\right)\) đồng biến trên miền đã cho

\(\Rightarrow f\left(x\right)\ge f\left(-1\right)=-2\)

\(\Rightarrow\) Để pt đã cho có nghiệm thì \(3m\ge-2\Rightarrow m\ge-\frac{2}{3}\)

31 tháng 10 2016

x=3 hoặc x=1