Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. x=(4y-21)/3=y-7+(y/3) . Đặt y/3=t thì y=3t . x=3t-7+t=4t-7 với t là một số tự nhiên bất kì
tớ chỉ trả lời đc câu 2 thui ak thông cảm hen !
p=3
p+2=5
p+4=7
xét : p=3 là số nguyên tố (thõa mãn )
p+2 => p+2+7=p+9 chia hết cho 3 (loại)
p+4 => p+4+5=p+9 chia het cho 3 (loại)
vậy p=3
a = 12 . q + 8
a) Ta có : 12 . q chia hết cho 4 , 8 chia hết cho 4
=> (12 . q + 8 ) chia hết cho 4 hay a chia hết cho 4
b) 12 . q chia hết cho 6 , 8 ko chia hết cho 6
=> ( 12 . q + 8 ) ko chia hết cho 6 hay a không chia hết cho 6
a = 12 . q + 8
a) Ta có: 12 . q chia hết cho 4,8chia hết cho 4
Suy ra :(12 . q + 8 ) chia hết cho 4 hoặc a chia hết cho 4
b) 12 . q chia hết chia hết cho 6,8 ko chia hết cho 6
Suy ra :(12 . q + 8) ko chia hết cho 6 hoặc a ko chia hết cho 6
Vì p là số nguyên tố lớn hơn 3 nên p ko chia hết cho 3
=> p^2 chia 3 dư 1
=> p62-1 chia hết cho 3
ĐPCM
ai tk mik mik lại (nhớ thông báo cho mik để mik nha)
Nếu p = 2 thì p + 2 = 4 và p + 4 = 6 đều không phải là số nguyên tố.
Nếu p 3 thì số nguyên tố p có 1 trong 3 dạng: 3k, 3k + 1, 3k + 2 với k N*.
+) Nếu p = 3k p = 3 p + 2 = 5 và p + 4 = 7 đều là các số nguyên tố.
+) Nếu p = 3k +1 thì p + 2 =3k+3-3
2. Giả sử b = 2
=> b + 2 = 2 + 2 = 4 ( không thoả mãn)
b = 3
=> b + 2 = 3 + 2 = 5, b + 4 = 3 + 4 = 7 ( thoả mãn)
=> b bằng 3 là một giá trị cần tìm
Xét b > 3 : Suy ra b có hai dạng 3k + 1 và 3k +2.
Với b có dạng 3k +1 => b + 2 = 3k +1 +2 = 3k + 3 chia hết cho 3 mà b là số nguyên tố lớn hơn 3 => không thoả mãn
Với b có dạng 3k + 2 => b + 4 = 3k +2 + 4 = 3k + 6 mà b là số nguyên tố lớn hơn 3 => không thoả mãn
Chứng tỏ mọi b lớn 3 đều không thoả mãn. Vậy b bằng 3 là giá trị cần tìm
n>3 =>n=3k+1=>(3k+1)(3k+1)+2015=>9k2+3k+3k+1+2015=>3(3k2+2k)+2016=>3(3k2+2k) và 2016 cùng chia hết cho 3 nên là hợp số
Vì vậy: n2+2015 là hợp số
-Vì n là số nguyên tố lớn 3 nên n có dạng 3k+1 và 3k+2 (k\(\in\)N*)
Với n =3k+1:
n2+2015=(3k+1)2+2015
=(3k+1).(3k+1)+2015
=3k(3k+1)+(3k+1)+2015
=9k2+3k+3k+1+2015
=9k2+6k+2016
Ta có:
9k2 chia hết cho 3
6k chia hết cho 3
2016 chia hết cho 3
=> 9k2+6k+2016 chia hết cho 3
Mà 9k2+6k+2016 > 3
=> 9k2+6k+2016 là hợp số
=>n2+2015 là hợp số (1)
Với n=3k+2:
n2+2015=(3k+2)2+2015
=(3k+2).(3k+2)+2015
=3k(3k+2)+2(3k+2)+2015
=9k2+6k+6k+4+2015
=9k2+12k+2019
Ta có:
9k2 chia hết cho 3
12k chia hết cho 3
2019 chia hết cho 3
=> 9k2+12k+2019 chia hết cho 3
Mà 9k2+12k+2019 > 3
=> 9k2+12k+2019 là hợp số
=>n2+2015 là hợp số (2)
Từ (1) và (2) suy ra : n2+2015 là hợp số
Vậy n2+2015 là hợp số
nhớ tick ủng hộ mình !
Tích này là hợp số
Vì được tạo bởi tích các số 2; 4; 6..........
Đáp số: hợp số
A = 2 x4x6x...x20+15
ta thấy trong dãy trên,có 2 số 10 và 20 là 2 số có chữ số tận cùng là 0
=>tích của 2 x4x6x...x20 có c/số tận cùng là 0
=>A=............0+15=...............5
đó có tân là c/số 5 nên A chia hết cho 5 (xuất hiện ước thứ 3)
=> 2 x4x6x...x20+15 là hợp số
=>A là hợp số