Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện: \(x\ge5\)
\(\dfrac{4\left(x-1\right)!}{4!.\left(x-5\right)!}-\dfrac{4\left(x-1\right)!}{3!\left(x-4\right)!}< \dfrac{5\left(x-2\right)!}{\left(x-4\right)!}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-4\right)}{6}-\dfrac{2\left(x-1\right)}{3}< 5\)
\(\Leftrightarrow x^2-9x-22< 0\)
\(\Rightarrow-2< x< 11\)
\(\Rightarrow x=\left\{5;6;7;8;9;10\right\}\)
Bạn sửa lại dòng thứ 5 của câu 1 giúp mình:
\(-\frac{1}{24}\left(n-2\right)\left(n-3\right)\left(n+2\right)\left(n-11\right)\)
2)
\(Y_n=\frac{\frac{\left(n+4\right)!}{n!}}{\left(n+2\right)!}-\frac{143}{4.n!}\)
\(=\frac{\left(n+4\right)\left(n+3\right)}{n!}-\frac{143}{4n!}\)
\(=\frac{1}{4n!}\left(2n+19\right)\left(2n-5\right)\)
\(Y_n< 0\)
<=> \(\frac{1}{4n!}\left(2n+19\right)\left(2n-5\right)\)<0
<=> \(\left(2n+19\right)\left(2n-5\right)< 0\)
<=> \(-\frac{19}{2}< n< \frac{5}{2}\)
Đối chiếu với n \(\ge\)1 và n là số tự nhiên
ta có: n = 1 hoặc n = 2
Vậy các số hạng âm của dãy số ( Y_n) là:
\(Y_1=-\frac{63}{4};Y_2=-\frac{23}{8}\)
1) \(X_n=\frac{5}{4}.\frac{\left(n-2\right)!}{\left(n-4\right)!}-\frac{\left(n-1\right)!}{4!\left(n-5\right)!}+\frac{\left(n-1\right)!}{3!\left(n-4\right)!}\)
\(=\frac{5}{4}.\left(n-2\right)\left(n-3\right)-\frac{\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(n-4\right)}{24}+\frac{\left(n-1\right)\left(n-2\right)\left(n-3\right)}{6}\)
= \(\left(n-2\right)\left(n-3\right)\left(\frac{5}{4}-\frac{\left(n-1\right)\left(n-4\right)}{24}+\frac{n-1}{6}\right)\)
= \(\left(n-2\right)\left(n-3\right)\left(-\frac{n^2}{24}+\frac{3n}{8}+\frac{11}{12}\right)\)
= - \(\left(n-2\right)\left(n-3\right)\left(n+2\right)\left(n-11\right)\)
Để \(X_n>0\)
<=> \(\left(n-2\right)\left(n-3\right)\left(n+2\right)\left(n-11\right)\) < 0
<=> n \(\in\left(-2;2\right)\cup\left(3;11\right)\)
Đối chiếu đk n \(\ge\)5
ta có n \(\in\) [ 5; 11 ) và n là số tự nhiên.
Các số hạng dương là:
\(X_5;X_6;...;X_{10}\) ( tự thay vào rồi tính kết quả nhé)
VD: \(X_5=\frac{5}{4}.A^2_3-C^4_4+C^3_4=\frac{21}{2}\)
Xét khai triển:
\(\left(x+1\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1x+C_{2n+1}^2x^2+...+C_{2n+1}^{2n+1}x^{2n+1}\)
Cho \(x=1\) ta được:
\(2^{2n+1}=C_{2n+1}^0+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^{2n+1}\)
\(=1+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^n+C_{2n+1}^{n+1}+...+C_{2n+1}^{2n}+1\)
\(=1+C_{2n+1}^1+...+C_{2n+1}^n+C_{2n+1}^n+...+C_{2n+1}^1+1\)
\(=2\left(1+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^n\right)\)
\(\Rightarrow2^{2n}-1=C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^n\)
\(\Rightarrow2^{2n-1}=2^{20}-1\Rightarrow2n=20\Rightarrow n=10\)
Khai triển: \(\left(x^2-x-1\right)^{10}\)
\(\left\{{}\begin{matrix}k_0+k_1+k_2=10\\k_1+2k_2=6\end{matrix}\right.\) \(\Rightarrow\left(k_0;k_1;k_2\right)=\left(4;6;0\right);\left(5;4;1\right);\left(6;2;2\right);\left(7;0;3\right)\)
Hệ số của \(x^6:\)
\(\frac{10!}{4!.6!}+\frac{10!}{5!.4!}.\left(-1\right)^5+\frac{10!}{6!.2!.2!}+\frac{10!}{7!.3!}.\left(-1\right)^7\)
a)
Với \(n=1\) .
\(2^n=2^2=4;2n+1=2.2+1=5\).
Với n = 1 thì \(2^n< 2n+1\).
Với \(n=2\)
\(2^n=2^3=8;2n+1=2.3+1=7\)
Với n = 2 thì \(2^n>2n+1\).
Ta sẽ chứng minh bằng quy nạp giả thiết:
Với \(n\ge2\) thì \(2^n>2n+1\). (*)
Với n = 2 (*) đúng .
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(2^k>2k+1\).
Ta sẽ chứng minh nó cũng đúng với \(n=k+1\).
Nghĩa là: \(2^{k+1}>2\left(k+1\right)+1\).
Thật vậy từ giả thiết quy nạp ta có:
\(2^{k+1}=2.2^k>2.\left(2k+1\right)=4k+2>2\left(k+1\right)+1\) (với \(k\ge2\)).
Vậy điều phải chứng minh đúng với mọi n.
b)
Tương tự như câu a ta kiểm tra được với \(n\ge7\) thì \(2^n>n^2+4n+5\). (*)
Với n = 7.
\(2^7=128\); \(n^2+4n+5=7^2+4.7+5=82\).
Vì \(2^7>7^2+4.7+7\) nên (*) đúng với n = 7.
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(2^k>k^2+4k+5\).
Ta cần chứng minh nó cũng đúng với \(n=k+1\).
Nghĩa là: \(2^{k+1}>\left(k+1\right)^2+4\left(k+1\right)+5\).
Thật vậy từ giả thiết quy nạp suy ra:
\(2^{k+1}=2.2^k>2\left(k^2+4k+5\right)=2k^2+8k+10\)
\(=\left(k+1\right)^2+4\left(k+1\right)+5+k^2+2k\)\(>\left(k+1\right)^2+4\left(k+1\right)+5\).
Vậy điều cần chứng minh đúng với mọi \(n\ge7\).