\(\frac{2x+m}{x^2-\left(m-4\right)x-2m^2+4m}\)xác định t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 9 2020

Xét pt \(x^2-2\left(m+1\right)x+m^2+2m=0\)

\(\Leftrightarrow\left(x-m\right)\left(x-m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=m\\x=m+2\end{matrix}\right.\)

Để hàm xác định trên miền đã cho \(\Leftrightarrow\left\{{}\begin{matrix}m\notin[0;1)\\m+2\notin[0;1)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m\ge1\end{matrix}\right.\\\left[{}\begin{matrix}m+2< 0\\m+2\ge1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m\ge1\end{matrix}\right.\\\left[{}\begin{matrix}m\le-2\\m\ge-1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow T=\left(-\infty;-2\right)\cup[-1;0)\cup[1;+\infty)\)

\(\Rightarrow a+b+c+d=-2+\left(-1\right)+0+1=-2\)

12 tháng 10 2021

Hàm số $y=\sqrt{x-m+2}+\sqrt{x-2m+3}$ xác định khi và chỉ khi
\[\left\{\begin{aligned}&x-m+2\geq 0 \\&x-2m+3\geq 
0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&x\geq m-2 
\\&x\geq 2m-3.\end{aligned}\right. \tag{$*$}\]

  • Khi $m-2\geq 2m-3$ hay $m\leq 1$ thì $(*)$ tương đương $x\geq m-2$. Do đó tập xác định của hàm số đã cho là $[m-2;+\infty)$.
    Yêu cầu bài toán thỏa mãn khi và chỉ khi
    \[(0;+\infty)\subset [m-2;+\infty) \Leftrightarrow \left\{\begin{aligned}&m\leq 1 \\&m-2\leq 0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&m\leq 1 \\&m\leq 2\end{aligned}\right. \Leftrightarrow m\leq 1.\]
  • Khi $m-2< 2m-3$ hay $m> 1$ thì $(*)$ tương đương $x\geq 2m-3$. Do đó tập xác định của hàm số đã cho là $[2m-3;+\infty)$.
    Yêu cầu bài toán thỏa mãn khi và chỉ khi
    \[(0;+\infty)\subset [2m-3;+\infty) \Leftrightarrow \left\{\begin{aligned}&m>1 \\&2m-3\leq 0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&m> 1 \\&m\leq \dfrac{3}{2}\end{aligned}\right. \Leftrightarrow 1<m\leq \dfrac{3}{2}.\]

Kết hợp hai trường hợp trên, ta được $m\leq \dfrac{3}{2}$ là các giá trị thỏa mãn yêu cầu bài toán.

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Lời giải:

Ta xét các TH sau:

TH1: \(x\geq 5\)

\(\Rightarrow \left\{\begin{matrix} |2x-4|=2x-4\\ |x+1|=x+1\\ |5-x|=x-5\end{matrix}\right.\Rightarrow |2x-4|+|x+1|-|5-x|=2x+2\)

Để hàm số đc xác định thì \(2x+2\neq 0\Leftrightarrow x\neq -1\), luôn đúng với \(x\geq 5\)

TH2: \(2< x< 5\)

\(\Rightarrow \left\{\begin{matrix} |2x-4|=2x-4\\ |x+1|=x+1\\ |5-x|=5-x\end{matrix}\right.\Rightarrow |2x-4|+|x+1|-|5-x|=4x-8\)

Để hàm số đc xác định thì \(4x-8\neq 0\), điều này luôn đúng với \(2< x< 5\)

TH3: \(-1\leq x\leq 2\)

\(\Rightarrow \left\{\begin{matrix} |2x-4|=4-2x\\ |x+1|=x+1\\ |5-x|=5-x\end{matrix}\right.\Rightarrow |2x-4|+|x+1|-|5-x|=0\)

(Không thỏa mãn)

TH4: \(x< -1\)

\(\Rightarrow \left\{\begin{matrix} |2x-4|=4-2x\\ |x+1|=-(x+1)\\ |5-x|=5-x\end{matrix}\right.\Rightarrow |2x-4|+|x+1|-|5-x|=-2(x+1)\)

Để hàm số đc xác định thì \(-2(x+1)\neq 0\), điều này luôn đúng với mọi \(x< -1\)

Từ các TH trên , ta suy ra \(x\in (2; +\infty)\cup (-\infty; -1)\)

Vậy \(a=-1; b=2\)

NV
16 tháng 9 2020

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-m\\x\ne\frac{m-1}{2}\end{matrix}\right.\)

Để hàm xác định trên khoảng đã cho

\(\Leftrightarrow\left\{{}\begin{matrix}-m\le1\\\left[{}\begin{matrix}\frac{m-1}{2}\le1\\2\le\frac{m-1}{2}< 4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ge-1\\\left[{}\begin{matrix}m\le3\\5\le m< 9\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-1\le m\le3\\5\le m< 9\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
18 tháng 9 2020

Lời giải:
Để $y$ xác định trên trên $(1;2)\cup [4;+\infty)$ thì:

\(\left\{\begin{matrix} x+m\geq 0\\ 2x-m+1\neq 0\end{matrix}\right., \forall x\in (1;2)\cup [4;+\infty)\)

\(\Leftrightarrow \left\{\begin{matrix} -m\leq x\\ m\neq 2x+1\end{matrix}\right., \forall x\in (1;2)\cup [4;+\infty)\)

\(\Leftrightarrow \left\{\begin{matrix} -m\leq 1\\ m\neq (3;5)\cup [9;+\infty)\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\geq -1\\ m\in (-\infty;3]\cup [5;9)\end{matrix}\right.\)

Vì $m$ nguyên dương nên $m\in\left\{1;2;3;5;6;7;8\right\}$

Tức là có 7 giá trị $m$ thỏa mãn.

17 tháng 10 2019

Mọi người giải thích chi tiết cho em với ạ.Em cảm ơn

18 tháng 10 2019

y xác định khi :

X3 - 1 \(\ne\)0

=> X \(\ne\)1.

Vậy TXD : D =R\ {1} hay D = (-\(\infty\);1) \(\cup\)( 1 ; + \(\infty\))