Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có \(f\left(x\right)=\left(x+1\right)A\left(x\right)+5\)
\(f\left(x\right)=\left(x^2+1\right)B\left(x\right)+x+2\)
do f(x) chia cho \(\left(x+1\right)\left(x^2+1\right)\)là bậc 3 nên số dư là bậc 2. ta có \(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)C\left(x\right)+ax^2+bx+c=\left(x+1\right)\left(x^2+1\right)C\left(x\right)+a\left(x^2+1\right)+bx+c-a\)
\(=\left(x^2+1\right)\left(C\left(x\right).x+C\left(x\right)+a\right)+bx+c-a\)
Vậy \(bx+c-a=x+2\Rightarrow\hept{\begin{cases}b=1\\c-a=2\end{cases}}\)
mặt khác ta có \(f\left(-1\right)=5\Leftrightarrow a-b+c=5\Rightarrow a+c=6\Rightarrow\hept{\begin{cases}a=2\\c=4\end{cases}}\)
vậy số dư trong phép chia f(x) cho \(x^3+x^2+x+1\)là \(2x^2+x+4\)
x2+(x+y)2=(x+9)2
x2+x2+2xy+y2=x2+18x+81
x2+x2+2xy+y2-x2-18x-81=0
x2+2xy+y2-18x-81=0
het biet roi
Ta có: x^2+(x+y)^2=(x+9)^2
=>x^2+x^2+2xy+y^2=x^2+18x+81
=>2x^2+2xy+y^2=x^2+18x+81
=>2x^2+2xy+y^2-x^2-18x-81=0
=>(x^2+2xy+y^2)-18(x+1)-99=0
=>(x+1)^2-18(x+1)-99=0
=>(x+1)(x+1-18)-99=0
=>(x+1)(x-17)-99=0
=>(x+1)(x-17)=99
=>(x+1)(x-17)=1*99=3*33=......
=>x=tự tính nốt
=>
1) Ta có f(x) = (x - 2)g(x) + 2005
f(x) = (x - 3)h(x) + 2006
Do đa thức x2 - 5x + 6 là đa thức bậc hai nên số dư sẽ là đa thức bậc nhất hoặc hạng tử tự do.
Giả sử f(x) = (x - 2)(x - 3)t(x) + ax + b
Ta có: f(x) = (x - 2)(x - 3)t(x) + ax + b = (x - 2)[(x - 3)t(x) + a] + 2a + b , suy ra ra 2a + b = 2005
f(x) = (x - 2)(x - 3)t(x) + ax + b = (x - 3)[(x - 2)t(x) + a] + 3a + b , suy ra ra 3a + b = 2006
Từ đó ta tìm được a = 1; b = 2003
Vậy f(x) chia cho x2 - 5x + 6 dư x + 2003.
Ủa sao chự nhiên có f(x) ở đây. À mà nói vậy thì cũng sai, chứ câu này chỉ có fan KPOP mới hiểu!^-^
Ta có \(x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
Số dư của phép chia đa thức f(x) cho x4 + x2 + 1 là đa thức có bậc thấp hơn, tức là \(ax^3+bx^2+cx+d\)
Ta có \(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)g\left(x\right)+\left(x^2+x+1\right)\left(ax+b-a\right)+\left(c-b\right)x+d+a-b\)
\(=\left(x^2+x+1\right)\left[\left(x^2-x+1\right)g\left(x\right)+ax+b-a\right]+\left(c-b\right)x+d+a-b\)
Vậy nên \(\hept{\begin{cases}c-b=-1\\d+a-b=1\end{cases}}\)
Ta cũng có:
\(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)g\left(x\right)+\left(x^2-x+1\right)\left(ax+b+a\right)+\left(c+b\right)x+d-a-b\)
Vậy nên \(\hept{\begin{cases}c+b=3\\d-a-b=5\end{cases}}\)
Từ (1) và (2) ta có: \(\hept{\begin{cases}c-b=-1\\c+b=3\end{cases}}\) và \(\hept{\begin{cases}d-b+a=1\\d-b-a=5\end{cases}}\)
Vậy nên \(\hept{\begin{cases}c=1\\b=2\end{cases}}\) và \(\hept{\begin{cases}d-b=3\\a=-2\end{cases}\Rightarrow\hept{\begin{cases}d=5\\a=-2\end{cases}}}\)
Vậy thì đa thức dư cần tìm là -2x3 + 2x2 + x + 5