Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-2x^2-3x+5,875=-2\left(x^2+1.5x-2,9375\right)\)
\(=-2\left(x^2+1.5x+2,25-5,1875\right)\)
\(=-2\left[\left(x+1,5\right)^2-5,1875\right]\)
\(=-2\left(x+1,5\right)^2+10,375\)
Ta có: \(\left(x+1,5\right)^2\ge0\forall x\inℝ\)
\(\Rightarrow-2\left(x+1,5\right)^2\le0\forall x\inℝ\)
\(\Rightarrow-2\left(x+1,5\right)^2+10,375\le10,375\forall x\inℝ\)
(Dấu "="\(\Leftrightarrow x+1,5=0\Leftrightarrow x=-1,5\))
Vậy GTLN của \(-2x^2-3x+5,875\)là 10,375\(\Leftrightarrow x=-1,5\)
Sửa)):
Từ dòng 2
\(=-2\left(x^2+1,5x+0,5625-6,4375\right)\)
\(=-2\left(x+0,75\right)^2+12,875\le12,875\)
Ta có:
4420 = (442)10 = 193610
Vì 1936 chia 15 dư 1 mũ lên bao nhiêu vẫn chia 15 dư 1
=> 193610 chia 15 dư 1
=> 4420 chia 15 dư 1
Có :
A(x) = (x^4-3x^3+a^2)-(a^2-ax-b)
= x^2.(x^2-3x+a)-(a^2-ax-b)
=> để A(x) chia hết cho x^2-3x+a thì :
a=0 ; b=0
Vậy a=b=0
Tk mk nha
Có :
A(x) = (x^4-3x^3+a^2)-(a^2-ax-b)
= x^2.(x^2-3x+a)-(a^2-ax-b)
=> để A(x) chia hết cho x^2-3x+a thì :
a=0 ; b=0
Vậy a=b=0
:4
<=>\(\frac{x+43}{57}+1+\frac{x+46}{54}+1=\frac{x+49}{51}+1+\frac{x+52}{48}+1\)
<=>\(\frac{x+100}{57}+\frac{x+100}{54}=\frac{x+100}{51}+\frac{x+100}{48}\)
<=>\(\frac{x+100}{57}+\frac{x+100}{54}-\frac{x+100}{51}-\frac{x+100}{48}=0\)
<=>\(\left(x+100\right)\left(\frac{1}{57}+\frac{1}{54}-\frac{1}{51}-\frac{1}{48}\right)=0\)
Vì \(\frac{1}{57}+\frac{1}{54}-\frac{1}{51}-\frac{1}{48}\ne0\)
=>x+100=0
<=>x=-100
k nha bạn
\(\Leftrightarrow\frac{37x+1648}{1026}=\frac{11x+556}{272}\Rightarrow\left(37x+1648\right)272=1026\left(11x+556\right)\)
<=>(37x+1648)272=272(37x+1648)
=>272(37x+1648)=1026(11x+556)
=>10064x+448256=11286x+570456
<=>-1222x=122200
=>x=122200:-1222
=>x=-100 ( dễ hiểu chưa hả )
số dư của phép chia 9 x 10 + 18 cho 27 là:
(9x10+18) : 27 = 4 (dư 0)
thì số dư của phép chia 9x10n+18 cho 27 cũng là 0
k cho mình nha bạn
Ta có : \(9.10^n+18=9.10^n+9.2\)\(=9.\left(10^n+2\right)\)\(⋮27\)
\(\Rightarrow\left(10^n+2\right)⋮3\) ma \(\left(10^n+2\right)⋮3\)
\(\Rightarrow9.10^n+18⋮27\)