Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi các góc tam giác ABC lần lượt là a,b,c
vì số đo các góc của tam giác ABC tỉ lệ với 4,3,2 nên ta có:
a/4=b/3=c/2 và a+b+c=180
áp dụng tính chất của dãy tỉ số bằng nhau ,ta có:
a/4=b/3=c/2=a+b+c/4+3+2=180/9=20
=>a/4=20=>20.4=80(độ)
b/3=20=>20.3=60(độ)
c/2=20=>20.2=40(độ)
k cho mk nha bn
Ta có :
21A=14B=6C=21A42=14B42=6C42=A2=B3=C7=A+B+C2+3+7=18012=1521A42=14B42=6C42=A2=B3=C7=A+B+C2+3+7=18012=15
,mà A2=15=>A=15.2=30A2=15=>A=15.2=30
B3=15=>B=15.3=45B3=15=>B=15.3=45
C7=15=>C=15.7=105C7=15=>C=15.7=105
SUY RA GÓC A=30 ĐỘ ;GÓC B=45 ĐỘ; GÓC C=105 ĐỘ
k mik nha
Theo đề ta có:
\(\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{4}=\dfrac{\widehat{C}}{6}=\dfrac{\widehat{D}}{8}\) và \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\) (tổng các góc trong tứ giác)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{4}=\dfrac{\widehat{C}}{6}=\dfrac{\widehat{D}}{8}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{2+4+6+8}=\dfrac{360^o}{20}=18\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{A}=18\cdot2=36^o\\\widehat{B}=18\cdot4=72^o\\\widehat{C}=18\cdot6=108^o\\\widehat{D}=18\cdot8=144^o\end{matrix}\right.\)
Gọi số đo của 3 góc tam giác abc là x,y,z (x,y,z \(\ne\)0 )
Vì x,y,z lần lượt tỉ lệ với 1,3,5 nên x,y,z lần lượt là \(\frac{x}{1},\frac{y}{3},\frac{z}{5}\)
Vì tổng tam giác abc = 180o (định lí) nên x + y + z = 180
Áp dụng tính chất dãy tỉ số bằng nhau, ta có\(\frac{x}{1}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{1+3+5}=\frac{180^o}{9}=20^o\)
Do đó, x = 20 . 1 = 20
y = 20 . 3 = 60
z = 20 . 5 = 100
Vậy số đo mỗi góc tam giác abc lần lượt là 20,60,100
Bài 1:
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)(ĐL tổng 3 góc 1 \(\Delta\))
\(\Rightarrow30^o+70^o+\widehat{C}=180^o\) (Vì \(\widehat{A}=30^o;\widehat{B}=70^o\) (gt))
\(\Rightarrow\widehat{C}=180^o-30^o-70^o=80^o\)
Bài 2:
Xét \(\Delta ABC\) (vuông tại A) có:
\(\widehat{B}+\widehat{C}=90^o\) (Tc \(\Delta\) vuông)
\(\Rightarrow\widehat{B}+40^o=90^o\) (Vì \(\widehat{C}=40^o\) (gt))
\(\Rightarrow\widehat{B}=90^o-40^o=50^o\)
Giải:
+) Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) ( 3 góc của tam giác )
\(\Rightarrow30^o+70^o+\widehat{C}=180^o\)
\(\Rightarrow\widehat{C}=80^o\)
Vậy...
+) Ta có: \(\widehat{B}+\widehat{C}=90^o\) ( do tam giác có \(\widehat{A}=90^o\) )
\(\Rightarrow40^o+\widehat{B}=90^o\)
\(\Rightarrow\widehat{B}=50^o\)
Vậy...