Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đo 3 góc của tam giác đó lần lượt là a; b; c ( a; b; c thuộc N* ) => a +b + c = 1800
Ta có : \(2a=3b=6c\)
\(\Rightarrow\frac{a}{3}=\frac{b}{2}=\frac{c}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{3}=\frac{b}{2}=\frac{c}{1}=\frac{a+b+c}{3+2+1}=\frac{180}{6}=30\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{3}=30\\\frac{b}{2}=30\\\frac{c}{1}=30\end{cases}\Rightarrow\hept{\begin{cases}a=90^0\\b=60^0\\c=30^0\end{cases}}}\)
Vậy.....
goi so do 3 goc la a,b,c tong 3 goc la a+b+c=180
ap dung tinh chat day ti so bang nhau ta co
2a=3b=6c
=>a/3=b/2=c/1
tu dau bai ta co a/3=b/2=c/1=a+b+c/1+2+3=180/6=30
=> a=30.3=90
b=30.2=60
c=30.1=30
a) vì góc A,B,C tỉ lệ thuận với 3,5,7
\(\Rightarrow\frac{A}{3}=\frac{B}{5}=\frac{C}{7}\)( A + B + C = 180 )
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{A}{3}=\frac{B}{5}=\frac{C}{7}=\frac{A+B+C}{3+5+7}=\frac{180}{15}=12\)
\(\Rightarrow A=36;B=60;C=84\)
b) tương tự
Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) ( theo định lí tổng ba góc của 1 tam giác )
vì \(\widehat{A}\), \(\widehat{B}\), \(\widehat{C}\)lần lượt tỉ lệ nghịch với 7,5,6
\(\Rightarrow7.\widehat{A}=5.\widehat{B}=6.\widehat{C}\)
\(\Rightarrow\frac{7.\widehat{A}}{210}=\frac{5.\widehat{B}}{210}=\frac{6.\widehat{C}}{210}\)
hay \(\frac{\widehat{A}}{30}=\frac{\widehat{B}}{42}=\frac{\widehat{C}}{35}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{\widehat{A}}{30}=\frac{\widehat{B}}{42}=\frac{\widehat{C}}{35}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{30+42+35}=\frac{180^o}{107}=\)
chắc đề có vấn đề
bài ko có vấn đề j cả. Thật sự ra phải đổi độ ra phúthay gì đó :/
tìm bội chung nhỏ nhất (3,4,6)=12
Ta có A/4=A/3=A/2 và A+B+C=180 độ
Xét......
Ta có:A/4=B/3=C/2=A/4+B/3+C/2=?
Ta có các số đo tam giác đó tỉ lệ nghịch với 3, 4, 6
\(\Rightarrow\frac{\widehat{A}}{\frac{1}{3}}=\widehat{\frac{B}{\frac{1}{4}}}=\widehat{\frac{C}{\frac{1}{6}}}\)
\(ADTCDTSBN:\widehat{\frac{A}{\frac{1}{3}}}=\widehat{\frac{B}{\frac{1}{4}}}=\widehat{\frac{C}{\frac{1}{6}}}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{\frac{1}{3}+\frac{1}{4}+\frac{1}{6}}=\frac{180^o}{\frac{3}{4}}=240\)
\(\Rightarrow\widehat{\frac{A}{\frac{1}{3}}}=240\Rightarrow\widehat{A}=80^o\)
\(\widehat{\frac{B}{\frac{1}{4}}}=240\Rightarrow\widehat{B}=60^o\)
\(\widehat{\frac{C}{\frac{1}{6}}}=240\Rightarrow\widehat{C}=40^o\)
Vậy \(\widehat{A}=80^o;\widehat{B}=60^o;\widehat{C}=40^o\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{3}=\dfrac{a+b+c}{4+5+3}=\dfrac{180}{12}=15\)
Do đó: a=60; b=75; c=45
Answer:
Ta gọi số đo ba góc của tam giác đó lần lượt là: x, y, z
Đề ra: \(\frac{x}{3}=\frac{y}{2}=\frac{z}{7}\) và \(x+y+z=180^o\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{7}=\frac{x}{3+2+7}=\frac{180^o}{12}=15^o\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=15^o\Rightarrow x=45^o\\\frac{y}{2}=15^o\Rightarrow y=30^o\\\frac{z}{7}=15^o\Rightarrow z=105^o\end{cases}}\)
Ta có số đó góc D, E, F của tam giác DEF tỉ lệ nghịch với 2, 3, 6 nên ta có:
\(2\widehat{D}=3\widehat{E}=6\widehat{F}\\ \Rightarrow\dfrac{2\widehat{D}}{12}=\dfrac{3\widehat{E}}{12}=\dfrac{\widehat{6F}}{12}\\ \Rightarrow\dfrac{\widehat{D}}{6}=\dfrac{\widehat{E}}{4}=\dfrac{\widehat{F}}{2}\)
Mà: \(\widehat{D}+\widehat{E}+\widehat{F}=180^o\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{\widehat{D}}{6}=\dfrac{\widehat{E}}{4}=\dfrac{\widehat{F}}{2}=\dfrac{\widehat{D}+\widehat{E}+\widehat{F}}{6+4+2}=\dfrac{180^o}{12}=15^o\)
\(\Rightarrow\widehat{D}=6\cdot15^o=90^o;\widehat{E}=15^o\cdot4=60^o;\widehat{F}=2\cdot15^o=30^o\)
Gọi số đo 3 góc D,E,F của ΔDEF lần lượt là \(d;e;f\) (o)
Điều kiện: \(d;e;f>0\)
Ta có:
+) \(d+e+f=180\) (theo định lý)
+) \(d;e;f\) tỉ lệ nghịch với 2,3,6 nên:
\(2d=3e=6f\)
\(\Rightarrow\dfrac{2d}{6}=\dfrac{3e}{6}=\dfrac{6f}{6}\)
\(\Rightarrow\dfrac{d}{3}=\dfrac{e}{2}=\dfrac{f}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau kết hợp \(d+e+f=180\) được:
\(\dfrac{d}{3}=\dfrac{e}{2}=\dfrac{f}{1}=\dfrac{d+e+f}{3+2+1}=\dfrac{180}{6}=30\)
Do đó:
\(\left\{{}\begin{matrix}d=3\cdot30=90\\e=2\cdot30=60\\f=1\cdot30=30\end{matrix}\right.\) (thỏa mãn điều kiện)
Vậy số đo 3 góc D,E,F của ΔDEF lần lượt là 90o;60o;30o