\(5x^2+7y^2+100=0\) là

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

Cái này dễ vc =='

\(5x^2+7y^2=-100\)

Hiển nhiên pt vô nghiệm vì VT\(\ge0\)

Vậy không tồn tại cặp x,y thỏa mãn pt trên

6 tháng 10 2017

Ta co

\(\Rightarrow5x^2+7y^2=-100\)

Vi \(5x^2\ge0\forall x\in Q\)va \(7y^2\ge0\forall x\in Q\)

\(\Rightarrow5x^2+7y^2\ge0\forall x,y\in Q\Rightarrow x,y\in\varnothing\)

23 tháng 6 2021

x( x + y )2 - y + 1 = 0

<=> x( x2 + 2xy + y2 ) - y + 1 = 0

<=> x3 + 2x2y + xy2 - y + 1 = 0

<=> xy2 + ( 2x2 - 1 )y + x3 + 1 = 0 (*)

Coi (*) là phương trình bậc 2 ẩn y , x là tham số 

(*) có nghiệm <=> Δ ≥ 0 <=> ( 2x2 - 1 )2 - 4x( x3 + 1 ) ≥ 0

<=> 4x4 - 4x2 + 1 - 4x4 - 4x ≥  0

<=> -4x2 - 4x + 1 ≥ 0

<=> \(\frac{-1-\sqrt{2}}{2}\le x\le\frac{-1+\sqrt{2}}{2}\)

Vì x nguyên => x ∈ { -1 ; 0 } 

+) Với x = -1 (*) trở thành -y2 + y = 0 <=> y( 1 - y ) = 0 <=> y = 0 (tm) hoặc y = 1 (tm)

+) Với x = 0 (*) trở thành -y + 1 = 0 <=> y = 1 (tm)

Vậy ( x ; y ) = { ( -1 ; 0 ) , ( -1 ; 1 ) , ( 0 ; 1 ) }

23 tháng 6 2021

cậu ơi có thể giải bài này mà ko dùng denta đc ko ?

8 tháng 5 2017

(Lời giải có thể hơi khó hiểu một chút)

Đề bài yêu cầu ta giải pt nghiệm nguyên \(2^x+5^y=n^2\)

Ta xét modulo 5. Rõ ràng \(n^2=0,1,4\left(mod5\right)\) nên \(2^x=0,1,4\left(mod5\right)\)

\(2^1=2\left(mod5\right)\)\(2^2=4\left(mod5\right)\)\(2^3=3\left(mod5\right)\)\(2^4=1\left(mod5\right)\) và sau đó quay vòng lại.

Từ đó ta thấy số dư của \(2^n\) khi chia cho 5 lặp lại theo chu kì 4 đơn vị.

Đồng thời, để \(2^x=0,1,4\left(mod5\right)\) thì \(x=0,2\left(mod4\right)\) hay \(x\) chẵn.

Đặt \(x=2k\). Pt thành \(4^k+5^y=n^2\)

-----

Ta chuyển sang xét modulo 3.

Do \(4^k=1\left(mod3\right)\) và \(n^2=0,1\left(mod3\right)\) và \(5^y=\left(-1\right)^y\left(mod3\right)\) nên \(y\) lẻ.

(Chỗ này mình ghi tắt. Bạn thử suy luận xem tại sao \(y\) chẵn không được nhé).

------

Trong pt cần giải ta biến đổi thành: \(5^y=n^2-4^k=\left(n-2^k\right)\left(n+2^k\right)\).

Vế trái chỉ gồm tích các số 5, do đó ta có: \(\hept{\begin{cases}n-2^k=5^b\\n+2^k=5^a\end{cases}}\) và \(b< a,a+b=y\).

Lấy hai vế trừ nhau ta có: \(2^{k+1}=5^a-5^b=5^b\left(5^{a-b}-1\right)\).

Vế trái không chia hết cho 5, nếu \(b\ge1\) thì vế phải sẽ chia hết cho 5 nên không được.

Vậy \(b=0,a=y\) và ta có \(2^{k+1}=5^y-1\).

-----

Ta viết \(5^y-1=\left(5-1\right)\left(5^{y-1}+5^{y-2}+...+5+1\right)\).

Để ý thấy, từ \(5^{y-1}\) tới \(5^0\) có \(y\) số lẻ, tức là tổng của chúng lẻ.

Chứng tỏ tổng này không là lũy thừa của 2, trừ trường hợp tổng đó là 1.

Tức là \(y=1\). Từ việc \(5^y-1=2^{k+1}\) suy ra \(k=1,x=2\).

Vậy \(\left(x;y\right)=\left(2;1\right)\) là nghiệm duy nhất của pt.

28 tháng 9 2016

không tồn tại x,y

28 tháng 9 2016

Ta có 5x2 >= 0

7y2 >= 0

=> 5x2 + 7y2 + 100 > 0

Vậy pt vô nghiệm

20 tháng 10 2018

\(5x^2+8xy+5y^2=36\)

\(\Rightarrow5\left(x+y\right)^2-2xy=36\)

\(\Rightarrow-2xy=36-5\left(x+y\right)^2\)

Ta lại có \(M=x^2+y^2=\left(x+y\right)^2-2xy=\left(x+y\right)^2+36-5\left(x+y\right)^2=36-4\left(x+y\right)^2\)

Mà \(-4\left(x+y\right)^2\Leftarrow0\)với mọi \(x;y\)nên \(M=36-4\left(x+y\right)^2\Leftarrow36\)

Dấu "=" xảy ra khi \(x=-y\)

9 tháng 9 2016

==' ahhhh , gửi lộn bài

10 tháng 9 2016

ai giải cho tui vs

 

k ko biết

2 tháng 11 2017

treen toán ko dc đưa những hình ảnh này. OK