Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Đặt \(A=\overline{5a43b}\)
A chia hết cho 2 và 5 nên A có tận cùng là 0
=>b=0
=>\(A=\overline{5a430}\)
A chia hết cho 9
=>5+a+4+3+0 chia hết cho 9
=>a+12 chia hết cho 9
=>a=6
=>Số cần tìm là 56430
c: Đặt \(B=\overline{735a2b}\)
B chia hết cho 5 và không chia hết cho 2 nên b=5
=>\(B=\overline{735a25}\)
B chia hết cho 9
=>7+3+5+a+2+5 chia hết cho 9
=>a+22 chia hết cho 9
=>a=5
Vậy: Số cần tìm là 735525
d: Đặt \(C=\overline{5a27b}\)
C chia hết cho 2 và 5 nên C có tận cùng là 0
=>b=0
=>\(C=\overline{5a270}\)
C chia hết cho 9
=>5+a+2+7+0 chia hết cho 9
=>a+14 chia hết cho 9
=>a=4
Vậy: Số cần tìm là 54270
e: Đặt \(D=\overline{7a142b}\)
Vì D chia hết cho cả 2 và 5 nên D có tận cùng là 0
=>b=0
=>\(D=\overline{7a1420}\)
D chia hết cho 9
=>7+a+1+4+2+0 chia hết cho 9
=>a+14 chia hết cho 9
=>a=4
=>Số cần tìm là 741420
g: \(X=\overline{40ab}\)
X chia hết cho 2 và 5 nên b=0
=>\(X=\overline{40a0}\)
X chia hết cho 3
=>4+a+0+0 chia hết cho 3
=>a+4 chia hết cho 3
=>\(a\in\left\{2;5;8\right\}\)
a) 5x2y chia hết cho cả 2 và 5 => y= 0
Số đó chia hết cho 9 nên 5 + x + 2 = 7+ x chia hết cho 9 => x = 2
Vậy số đó là: 5220
b) số đó chia hết cho 5 nên y = 0 hoặc y = 5
Với y = 0 : Số đó chia hết cho 3 thì 7 + x chia hết cho 3 => x = 2 hoặc x = 5; x = 8. Các số tương ứng là: 5220; 5520; 5820
Với y = 5 : số đó chia hết cho 5 thì tổng 12 + x chia hết cho 3 => x = 0 ; x = 3; x = 6; x = 9 Các số tương ứng là: 5025; 5325; 5625; 5925
c) chia cho 2 dư 1 => y lẻ => y = 1;3;5;7;9
mà số đó chia cho 5 dư 4 => y = 4 hoặc 9. Kết hợp với điều kiện trên => y = 9
Số đó chia hết cho 9 nên 7 +x + y chia hết cho 9
Vì y = 9 => 7 + x + 9 = 16 + x chia hết cho 9 => x = 2
Vậy số cần tìm là: 5229
a) a = 2, b = 0.
b) a = 6, b = 0.
c) a = 5, b = 5.
d) a = 4, b = 0.
e) a = 1, b = 0.
f ) a = 2, b = 0.
g) a = 2, b = 0.
h) a = 2,5,8 , b = 0.
a) chia 2&5=> b=0; chia 3=> 4+a+1+2+0 =7+a chia het cho 3=> a={2,5,8}
b) chia 2&5=> b=0; chia 9=> 5+a+4+3+0 =12+a chia het cho 9=> a={6}
c) chia 5=> b=[0,5]; chia 9=> 7+3+5+a+[0,5]=15+a+[0,5] chia hết cho 9=> (b,a)=(0,3); (5,7)
d) chia 2&5=> b=0; chia 3=> 5+a+2+7+0 =14+a chia het cho 9=> a={4}
a) a = 2 hoặc 5 hoặc 8
b = 0
b) a = 6
b = 0
c) a = 1 hoặc 5
b = 0 hoặc 5
d) a = 4
b = 0
a)Để 4a12b chia hết cho 2 và 5 thì b=0
Ta được số 4a120
Để 4a120 chia hết cho 9 thì (4+a+1+2+0) chia hết cho 9
=>(7+a) chia hết cho 9
=> a=9
Ta được số 42120
Vậy số cần tìm là 42120
1350 chia hết cho 5 và 9
\(\overline{1a5b}\) ⋮ 5; 9
\(\overline{1a5b}\) ⋮ 5 ⇒ b = 0; \(\overline{1a5b}\) ⋮ 9 ⇒ 1 + a + 5 + b ⋮ 9 ⇒ 1 + a + 5 + 0 ⋮ 9
⇒ 6 + a ⋮ 9
⇒ a = 3
Thay a = 3; b = 0 vào biểu thức: \(\overline{1a5b}\) ta có: \(\overline{1a5b}\) = 1350