Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c.
\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos\left(8x+\frac{2\pi}{3}\right)=\frac{1}{2}-\frac{1}{2}cos\left(\frac{14\pi}{5}-2x\right)\)
\(\Leftrightarrow cos\left(8x+\frac{2\pi}{3}\right)=cos\left(2\pi+\frac{4\pi}{5}-2x\right)\)
\(\Leftrightarrow cos\left(8x+\frac{2\pi}{3}\right)=cos\left(\frac{4\pi}{5}-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}8x+\frac{2\pi}{3}=\frac{4\pi}{5}-2x+k2\pi\\8x+\frac{2\pi}{3}=2x-\frac{4\pi}{5}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{75}+\frac{k\pi}{5}\\x=-\frac{11\pi}{45}+\frac{k\pi}{3}\end{matrix}\right.\)
a.
\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cos4x=\frac{1}{2}-\frac{1}{2}cos\left(2x+\frac{2\pi}{3}\right)\)
\(\Leftrightarrow cos4x=-cos\left(2x+\frac{2\pi}{3}\right)\)
\(\Leftrightarrow cos4x=cos\left(\frac{\pi}{3}-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{3}-2x+k2\pi\\4x=2x-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{18}+\frac{k\pi}{3}\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)
b.
\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos\left(10x+\frac{2\pi}{3}\right)-\frac{1}{2}-\frac{1}{2}cos\left(6x+\frac{\pi}{2}\right)=0\)
\(\Leftrightarrow cos\left(10x+\frac{2\pi}{3}\right)=-cos\left(6x+\frac{\pi}{2}\right)\)
\(\Leftrightarrow cos\left(10x+\frac{2\pi}{3}\right)=cos\left(\frac{\pi}{2}-6x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}10x+\frac{2\pi}{3}=\frac{\pi}{2}-6x+k2\pi\\10x+\frac{2\pi}{3}=6x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{96}+\frac{k\pi}{8}\\x=-\frac{7\pi}{24}+\frac{k\pi}{2}\end{matrix}\right.\)
a.
\(sinx+cosx+\left(sinx+cosx\right)^2+cos^2x-sin^2x=0\)
\(\Leftrightarrow sinx+cosx+\left(sinx+cosx\right)^2+\left(cosx-sinx\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1+2cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\\1+2cosx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
1) đặc : \(f\left(x\right)=y=cot4x\)
điều kiện xác định : \(sin4x\ne0\Leftrightarrow4x\ne k\pi\Leftrightarrow x\ne\dfrac{k\pi}{4}\)
\(\Rightarrow x\in D\) thì \(-x\in D\)
ta có : \(f\left(-x\right)=cot\left(-4x\right)=-cot4x=-f\left(x\right)\)
\(\Rightarrow\) hàm này là hàm lẽ
2) đặc : \(f\left(x\right)=y=\left|cotx\right|\)
điều kiện xác định : \(sinx\ne0\Leftrightarrow x\ne k\pi\)
\(\Rightarrow x\in D\) thì \(-x\in D\)
ta có : \(f\left(-x\right)=\left|cot\left(-x\right)\right|=\left|-cotx\right|=\left|cotx\right|=f\left(x\right)\)
\(\Rightarrow\) hàm này là hàm chẳn
3) đặc : \(f\left(x\right)=y=1-sin^2x=cos^2x\)
điều kiện xác định : \(D=R\)
\(\Rightarrow x\in D\) thì \(-x\in D\)
ta có : \(f\left(-x\right)=cos^2\left(-x\right)=cos^2x=f\left(x\right)\)
\(\Rightarrow\) hàm này là hàm chẳn
4) đặc : \(f\left(x\right)=y=sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{sinx+cosx}{\sqrt{2}}\)
điều kiện xác định : \(D=R\)
\(\Rightarrow x\in D\) thì \(-x\in D\)
ta có : \(f\left(-x\right)=\dfrac{sin\left(-x\right)+cos\left(-x\right)}{\sqrt{2}}=\dfrac{-sinx+cosx}{\sqrt{2}}\ne f\left(x\right);-f\left(x\right)\)
\(\Rightarrow\) hàm này là hàm không chẳn không lẽ
mấy bài còn lại bn làm tương tự cho quen nha