K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2020

a) \(A=\left(a-2b+c\right)-\left(a-2b-c\right)\)

\(A=a-2b+c-a+2b+c=2c\)

b) \(B=\left(-x-y+3\right)-\left(-x+2-y\right)\)

\(B=-x-y+3+x-2+y=1\)

c) \(C=2\left(3a+b-1\right)-3\left(2a+b-2\right)\)

\(C=6a+2b-2-6a-3b+6=4-b\)

19 tháng 8 2020

a. \(A=\left(a-2b+c\right)-\left(a-2b-c\right)=a-2b+c-a+2b+c=0\) 

b. \(B=\left(-x-y+3\right)-\left(-x+2-y\right)=-x-y+3+x-2+y=1\)

c. \(C=2\left(3a+b-1\right)-3\left(2a+b-2\right)=6a+2b-2-6b-3b+6=4-3b\)

2 tháng 8 2019

Biết a=b=c=d 

Thay vào M

Ta có: 

\(M=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)

\(=4.\frac{2a-a}{a+a}=4.\frac{a}{2a}=4.\frac{1}{2}=2\)

1 tháng 8 2019

a, \(\frac{a}{5}=\frac{b}{6}=\frac{c}{7}=k\)

\(\Rightarrow\hept{\begin{cases}a=5k\\b=6k\\c=7k\end{cases}}\)

\(\Rightarrow ab=5k\cdot6k=30k^2\) 

\(\Rightarrow30k^2=3000\)

\(\Rightarrow k^2=100\)

\(\Rightarrow k=\pm10\)

\(k=10\Rightarrow\hept{\begin{cases}a=5\cdot10=50\\b=6\cdot10=60\\c=7\cdot10=70\end{cases}}\)

b, \(\frac{a}{5}=\frac{b}{6}=\frac{c}{7}\)

\(\Rightarrow\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)

\(\Rightarrow\frac{a^2-b^2+c^2}{25-36+49}=\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)

\(\Rightarrow\frac{152}{38}=\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)

\(\Rightarrow4=\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)

\(\Rightarrow\hept{\begin{cases}a^2=4\cdot25=100\\b^2=4\cdot36=144\\c^2=4\cdot49=196\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=\pm10\\b=\pm12\\c=\pm14\end{cases}}\)

30 tháng 11 2015

ối giời ơi làm nhiều thế này mà chỉ đc 1 tick "đúng" ư

3 tháng 7 2019

ĐKXĐ: \(c\ne0\)

Có: \(\hept{\begin{cases}a+\frac{b}{c}=11\\b+\frac{a}{c}=14\end{cases}\Leftrightarrow}a+b+\frac{a+b}{c}=25\)

\(\Leftrightarrow\left(a+b\right)\left(1+\frac{1}{c}\right)=\frac{a+b}{c}\cdot\left(c+1\right)=25\)

Vì \(c+1\ne1\)

nên: \(\frac{a+b}{c}=1\)hoặc \(\frac{a+b}{c}=5\)hoặc \(\frac{a+b}{c}=-5\)

\(\left(3x-1\right)⋮\left(x+1\right)\)

\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)

\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)

\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)

\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)

27 tháng 12 2018

a, ĐỂ \(\frac{24}{2n+5}\)là số nguyên 

\(\Rightarrow24⋮2n+5\Rightarrow2n+5\inƯ\left(24\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm8;\pm12;\pm24\right\}\)

2n + 5 = 1 => 2n = -4 => n = -2 

2n + 5 = -1 => n = -3 

... tương tự thay vào nhé !