Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=5+5^2+5^3+5^4+5^5+5^6+...+5^2004
=(5+5^2+5^3+5^4)+(5^5+5^6+5^7+5^8)+...+(5^2001+5^2002+5^2003+5^2004)
=780+5^4(5+5^2+5^3+5^4)+...+5^2000(5+5^2+5^3+5^4)
=780(1+5^4+...+5^2000) chia hết cho 65
S=5+5^2+5^3+5^4+5^5+5^6+...+5^2004
=(5+5^2+5^3+5^4+5^5+5^6)+...+(5^1999+5^2000+5^2001+5^2002+5^2003+5^2004)
=19530+...+5^1998(5+5^2+5^3+5^4+5^5+5^6)
=19530(1+...+5^1998) chia hết cho 126
S=5+52+53+54+55+56+...+52004
S=(5+54)+(52+55)+(53+56)+...+(52000+52004)
S=5x126+52x126+53x126+...+52000x126
\(\Rightarrow\)S chia hết cho 126
S=5+52+53+54+55+56+...+52004
có 65=13*5 mà tổng S chia hết cho 5 nha nên Cm S chia hết cho 13
tổng S có 2004 số số hạng được tách thành 2 phần: S=S1+S2
Với S1=5+53=130=65*2 nên S1 chia hết cho 65
S2=52+54+55+...+52004(có 2002 số số hạng) mà 2002 chia hết cho 13 nên S2 chia hết cho 65
Vậy S chia hết cho 65
Cho mình ****
S=(1+3)+(32+33)+...+(32003+32004)
S=4+32(1+3)+...+32003(1+3)
S=4+32.4+...+32003.4
S=4(1+32+...+32003) chia hết cho 4
=>s chia hết cho 4 tick tớ nha
Ta có :
S= 1+(3+32)+(33+34)+...+(32003+32004)
=>S=1+3.(1+3)+33.(1+3)+...+32003.(1+3)
=>S=1+3.4+33.4+...+32003.4
=>S=1+4.(3+33+...+32003)
Vì 4.(3+33+...+32003) chia hết cho 4
=>1+4.(3+33+...+32003) chia 4 dư 1
Đề hơi có vấn đề rồi
S = 4+42+.....+42004
S = (4+42)+(43+44)+....+(42003+42004)
S = 1(4+42)+43(4+42)+.....+42003(4+42)
S = 1.20 + 43.20 +......+ 42003.20
S = 20(1+43+...+42003) chia hết cho 10 (vì 20 chia hết cho 10)
S = 4+42+43+...+42004
4S = 42+43+44+...+42005
3S = 4S - S = 42005 - 4
=> 3S + 4 = 42005
Mà 42005 chia hết cho 42004
=> 3S + 4 chia hết cho 42004 (đpcm)
tại sao 4^2005 lại chia hết cho 4^2004