K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2016

\(S=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(3S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(2S=3S-S=1-\frac{1}{3^{100}}\)

\(S=\frac{1-\frac{1}{3^{100}}}{2}\)

30 tháng 4 2017

dốt thế 

30 tháng 4 2017

Mình ngu lắm dân trần đăng ninh chuyên anh mà làm sao giỏi toán được

8 tháng 8 2017

A=1+3+3^2+3^3+3^4+...+3^100

3A=3+3^2+3^3+3^4+...+3^101

3A-A=(3+3^2+3^3+3^4+...+3^101)-(1+3+3^2+3^3+3^4+...+3^100)

2A=3^101-1

A=(3^101-1):2

phần b làm tương tự phần a nhưng mà là nhân cả biểu thức B với 4 nhé

20 tháng 3 2017

ai mà biết mình giờ làm 

20 tháng 3 2017

= I DON'T NO NHA, NHỚ K MK ĐÓ

20 tháng 8 2019

\(B=1+2+3^2+\cdot\cdot\cdot+3^{51}\)

\(\Rightarrow B=3+3^2+3^3+\cdot\cdot\cdot+3^{51}\)

\(\Rightarrow3B=3^2+3^3+\cdot\cdot\cdot+3^{52}\)

\(\Rightarrow3B-B=\left(3^2+\cdot\cdot\cdot+3^{52}\right)-\left(3+\cdot\cdot\cdot+3^{51}\right)\)

\(\Rightarrow2B=3^{52}-3\)

\(\Rightarrow B=\frac{3^{52}-3}{2}\)

\(1+2+3^2+3^3+...+3^{50}+3^{51}\) 

Đặt tổng trên là A ta có : 

\(A=3+3^2+3^3+...+3^{50}+3^{51}\)

\(3A=3^2+3^3+3^4+...+3^{51}+3^{52}\)

\(3A-A=\left(3^2+...+3^{52}\right)-\left(3+...+3^{51}\right)\)

\(2A=3^{52}-3\)

\(A=\frac{3^{52}-3}{2}\)

Vậy...

Cbht

21 tháng 1 2019

Ta có: M = 1 + 3  + 32 + 33 + ... + 325

=> 3M = 3(1 + 3 +32 + 33 + ... + 325)

=> 3M = 3 + 32 + 33 + ... + 325 + 326

=> 3M - M = (3 + 32 + 33 + ... + 326) - (1 + 3 + 32 + 33 + ... + 325)

=> 2M = 326 - 1

=> M = \(\frac{3^{26}-1}{2}\)

^ là mũ nha

M=1+3+3^2+3^3+....+3^25

3M=3+3^2+3^3+3^4+...+3^26

=>2M=3M-M=3^26-1

=>M=2M:2=(3^26-1):2

Vậy M=(3^26-1):2

4 tháng 12 2017

S=3+32+33+....+360

2S=32+33+...+361

2S-S=(32+33+...+361-3+32+33+...+360)

S=361-3

4 tháng 12 2017

mk không chắc đâu nhé.

S=3+32+33+34+....+360

2.S=3+33+34+35+....+361

2.S-S=361-3

vậy S=3mũ 61-1

câu hỏi này mk làm lâu rùi nên hông nhớ rõ.Nếu sai đừng trách nhé

2 tháng 10 2017

\(a,S=1+3+3^2+....+3^{100}.\)

\(\Rightarrow3S=3+3^2+...+3^{101}\)

\(\Rightarrow3S-S=\left(3+3^2+...+3^{101}\right)-\left(1+3+....+3^{100}\right)\)

\(\Rightarrow2S=3^{101}-1\)

\(\Rightarrow S=\frac{3^{101}-1}{2}\)

\(b,A=1+3^2+3^4+...+3^{100}\)

\(\Rightarrow3^2A=3^2+3^4+...+3^{102}\)

\(\Rightarrow9A-A=\left(3^2+3^4+...+3^{102}\right)-\left(1+3^2+....+3^{100}\right)\)

\(\Rightarrow8A=3^{102}-1\)

\(\Rightarrow A=\frac{3^{102}-1}{8}\)

13 tháng 1 2024

cvvv