Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng các số hạng của S là 99 số hạng.
a/ Nhóm 3 số hạng liên tiếp với nhau, ta được 33 nhóm như sau:
S=(2+22+23)+....+(297+298+299)=2(1+2+22)+24(1+2+22)+...+297(1+2+22)
=> S=2.7+24.7+...+297.7=7(2+24+297)
=> S chia hết cho 7
b/
S=1-1+2+22+23+...+299=(1+2+22+23+...+299)-1
Tổng các số hạng trong ngoặc là 100 số hạng. Nhóm 5 số hạng liên tiếp với nhau ta được:
S=(1+2+22+23+24)+25(1+2+22+23+24)+...+295(1+2+22+23+24)-1
S=31.(1+25+...+295)-1
=> S+1=31.(1+25+...+295) => S+1 chia hết cho 31
=> S không chia hết cho 31
a )
Ta co S = ( 2 + 22 + 23 + 24 + 25 ) + ...... + ( 296 + 297 + 298 +299 + 2100 )
= 2 ( 1 + 2 + 2.2 + 2.2.2 + 2.2.2.2 ) + .... + 296 ( 1 + 2 + 2.2 + 2.2.2 + 2.2.2.2 )
= 2.31 + .....+ 296.31
= 31 ( 2 + ... + 296 ) chia het cho 31
b ) Goi d laf UC ( 3n+1 ; 4n+1 )
=> 3n + 1 ⋮ d va 4n + 1 ⋮ d
=> 4(3n + 1)⋮ d va3(4n +1) ⋮ d
=> 12n + 4 ⋮ d và 12n + 3 ⋮ d
=> ( 12n + 4 ) - ( 12n + 3 ) ⋮ d
=> 1 ⋮ d => d = 1
Vi ƯC ( 3N+1;4N+1 ) = 1 => 3N+1;4N+1 là nguyên tố cùng nhau
c ) Xét x > 0
=> |x| + x = x+x = 2x = 0 => x = 0 ( loại )
Xét x < 0
=> |x| + x = - x + x = 0 ( tm)
Vậy x < 0
S=1+7+7^2+7^3+...+7^100+7^101
=(1+7)+7^2(1+7)+...+7^100(1+7)
=8+7^2.8+...+7^100.8
=8.(1+7^2+...+7^100) chia hết cho 8
Vậy S chia hết cho 8
a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5
S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)
S=20+4^2*20+...+4^98
S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)
b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6
S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
S=6+2^2.*6+...+2^2008
S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6
1) + S = 5 + 52 + 53 + ... + 596 (có 96 số; 96 chia hết cho 6)
S = (5 + 52 + 53 + 54 + 55 + 56) + (57 + 58 + 59 + 510 + 511 + 512) + ... + (591 + 592 + 593 + 594 + 595 + 596)
S = (5 + 54) + (52 + 55) + (53 + 56) + (57 + 510) + ... + (593 + 596)
S = 5.(1 + 53) + 52.(1 + 52) + 53.(1 + 53) + 57.(1 + 53) + ... + 593.(1 + 53)
S = 5.126 + 52.126 + 53.126 + 57.126 + ... + 593.126
S = 126.(5 + 52 + 53 + 57 + ... + 593) chia hết cho 126
+ Do 5 + 52 + 53 + 57 + ... + 593 chia hết cho 5 mà 126 chia hết cho 2
=> S chia hết cho 10 => S có tận cùng là 0
2) 162008 - 82000
= (...6) - (84)500
= (...6) - (...6)500
= (...6) - (...6)
= (...0) chia hết cho 10
3) 13 + 23 + 33 + 43 + 53 + 63 + 73 + 83 + 93 + 103 = (x + 12)2
=> 1 + 8 + 27 + 64 + 125 + 216 + 343 + 512 + 729 + 1000 = (x + 1)2
=> (1 + 729) + (8 + 512) + (27 + 343) + (64 + 216) + 125 + 1000 = (x + 1)2
=> 730 + 520 + 370 + 280 + 1125 = (x + 1)2
=> (730 + 370) + (520 + 280) + 1125 = (x + 1)2
=> 1100 + 800 + 1125 = (x + 1)2
=> 3025 = (x + 1)2, vô lí
1) + S = 5 + 52 + 53 + ... + 596 (có 96 số; 96 chia hết cho 6)
S = (5 + 52 + 53 + 54 + 55 + 56) + (57 + 58 + 59 + 510 + 511 + 512) + ... + (591 + 592 + 593 + 594 + 595 + 596)
S = (5 + 54) + (52 + 55) + (53 + 56) + (57 + 510) + ... + (593 + 596)
S = 5.(1 + 53) + 52.(1 + 52) + 53.(1 + 53) + 57.(1 + 53) + ... + 593.(1 + 53)
S = 5.126 + 52.126 + 53.126 + 57.126 + ... + 593.126
S = 126.(5 + 52 + 53 + 57 + ... + 593) chia hết cho 126
+ Do 5 + 52 + 53 + 57 + ... + 593 chia hết cho 5 mà 126 chia hết cho 2
=> S chia hết cho 10 => S có tận cùng là 0
a) S=\(1-3+3^2-3^3+...+3^{98}-3^{99}.\)
=\((1-3+3^2-3^3)+...+3^{96}-3^{97}+3^{98}-3^{99}.\)
=\(\left(1-3+3^2-3^3\right)+..+3^{96}\left(1-3+3^2-3^3\right)\)
=(\(1-3+3^2-3^3\))(1+\(3^4+...+3^{92}+3^{96})\)
=-20(1+\(3^4+...+3^{92}+3^{96})\)là bội của -20
Bài 1 :
\(A=3^0+3^1+3^2+3^3+...+3^{98}\)
\(A=\left(1+3+3^2\right)+.....+\left(3^{97}+3^{98}+3^{99}\right)\) ( Nhóm 3 số 1 nhé )
\(A=13+.....+3^{97}.13⋮13\left(\text{đ}pcm\right)\)
Bài 2 :
Theo ý a ta có :
\(A=13+.....+3^{97}.13+3^{99}+3^{100}\)
\(A=13+.....+3^{97}.13+3^{99}.4⋮̸13\)
Bài 3 :
Để D chia hết cho 2 thì x chia hết cho 2
1. \(A=3^0+3^1+3^2+...+3^{98}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{96}\right)\)chia hết cho \(13\).
2. \(B=3^0+3^1+3^2+3^3+...+3^{100}\)
\(=1+3+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(=4+13\left(3^2+3^5+...+3^{98}\right)\)không chia hết cho \(13\).
3. \(D=\left(12.3+26.b+2022.c+x\right)\)chia hết cho \(2\)
\(\Leftrightarrow x⋮2\)(vì \(12.3⋮2,26b⋮2,2022c⋮2\))
điêu đấy phải là 8