Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.S = 2 + 22 + 23 + ...+ 211
Lấy 2.S - S = (2 + 22 + 23 + ...+ 211) - (1 + 2 + 22 + ...+ 210)
=> S = 211 - 1
S = 1+2+22+23+...+210
2S = 2+22+23+24+...+211
2S-S = S = 2+22+23+24+...+211-1-2-22-23-...-211
S = 211-1
S = 2048-1
S = 2047
a) Ta có: S=1+(32)1+(32)2+(32)3+....+(32)49=1+9+92+...+949
9S=9+92+93+...+950 =>9S-S=950-1 =>S=\(\frac{9^{50}-1}{8}\)
b) Ta có: S=1+9+92+...+949 . S có (49+1)=50 số hạng, nhóm 2 số hạng liên tiếp với nhau ta được:
S=(1+9)+92(1+9)+....+948(1+9)=10.(1+92+...+948)
Vậy S chia hết cho 10
Ta có: \(10A=\frac{10^{20}+10}{10^{20}+1}=1+\frac{9}{10^{20}+1}\)
\(10B=\frac{10^{21}+10}{10^{21}+1}=1+\frac{9}{10^{21}+1}\)
Vì \(\frac{9}{10^{20}+1}>\frac{9}{10^{21}+1}\Rightarrow1+\frac{9}{10^{20}+1}>1+\frac{9}{10^{20}+1}\)
\(\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
Vậy A > B
Ta có tính chất: \(\dfrac{a}{b}< \dfrac{a+m}{b+m}\)
\(N=\dfrac{10^{20}+1}{10^{21}+1}< \dfrac{10^{20}+1+9}{10^{21}+1+9}\)
\(\Rightarrow N< \dfrac{10^{20}+10}{10^{21}+10}\)
\(\Rightarrow N< \dfrac{10\left(10^{19}+1\right)}{10\left(10^{20}+1\right)}\)
\(\Rightarrow N< \dfrac{10^{19}+1}{10^{20}+1}\)
\(\Rightarrow N< M\)
c ) S = 1.2 + 2.3 + 3.4 + .... + 99.100
=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3
=> 3S = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 99.100.( 101 - 98 )
=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 99.100.101 - 98.99.100
=> 3S = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + ( 98.99.100 - 98.99.100 ) + 99.100.101
=> 3S = 99.100.101 => S = \(\frac{99.100.101}{3}\)
d ) Ta có \(\frac{1}{2^2}<\frac{1}{2.1}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
..........
\(\frac{1}{100^2}<\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{100}=\frac{99}{100}<1\)
\(S=1+10^1+10^2+...+10^{20}\)
\(10S=10+10^2+10^3+...+10^{21}\)
\(10S-S=\left(10+10^2+...+10^{21}\right)-\left(1+10+...+10^{20}\right)\)
\(9S=10^{21}-1\)
\(S=\frac{10^{21}-1}{9}\)