Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\dfrac{7}{x}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}=\dfrac{29}{45}\left(x\ne0\right)\\ \Rightarrow\dfrac{7}{x}+\dfrac{1}{5}-\dfrac{1}{45}=\dfrac{29}{45}\\ \Rightarrow\dfrac{7}{x}+\dfrac{8}{45}=\dfrac{29}{45}\\ \Rightarrow\dfrac{7}{x}=\dfrac{21}{45}\Rightarrow\dfrac{21}{3x}=\dfrac{21}{45}\Rightarrow3x=45\\ \Rightarrow x=15\)
\(S=\frac{1}{4}\times\left(\frac{4}{5\times9}+\frac{4}{9\times13}+\frac{4}{13\times17}+...+\frac{4}{41\times45}\right)\)
\(S=\frac{1}{4}\times\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\right)\)
\(S=\frac{1}{4}\times\left(\frac{1}{5}-\frac{1}{45}\right)\)
\(S=\frac{1}{4}\times\frac{8}{45}\)
\(S=\frac{1\times2}{1\times45}\)
\(S=\frac{2}{45}\)
Vậy \(S=\frac{2}{45}\)
Tk nha bn !!
\(\dfrac{1}{1\times5}+\dfrac{1}{5\times9}+...+\dfrac{1}{45\times49}\)
\(=\dfrac{1}{4}\times\left(\dfrac{4}{1\times5}+\dfrac{4}{5\times9}+...+\dfrac{4}{45\times49}\right)\)
\(=\dfrac{1}{4}\times\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{45}-\dfrac{1}{49}\right)\)
\(=\dfrac{1}{4}\times\left(1-\dfrac{1}{49}\right)=\dfrac{1}{4}\times\dfrac{48}{49}=\dfrac{12}{49}\)
=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007
=2008/12
=502/3
A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)
A = ( 1 + \(\dfrac{1}{12}\)) \(\times\) ( 1 + \(\dfrac{1}{13}\)) \(\times\) ( 1 + \(\dfrac{1}{14}\)) \(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))
A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)
A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)
A = 1 \(\times\) \(\dfrac{502}{3}\)
A = \(\dfrac{502}{3}\)
Ta có công thức tổng quát:
\(\dfrac{k}{n\cdot\left(n+k\right)}=\dfrac{1}{n}-\dfrac{1}{n+k}\)
\(a,A=\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{x\left(x+3\right)}\\ =\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\dfrac{x-2}{5\left(x+3\right)}\\ =\dfrac{x-2}{15\left(x+3\right)}\)
Theo đề bài ta có:
\(A=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{15\left(x+3\right)}=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{303}{308}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{305-2}{305+3}\\ \Rightarrow x=305\)
\(I=\dfrac{2}{1\times5}+\dfrac{2}{5\times9}+\dfrac{2}{9\times13}+...+\dfrac{2}{181\times185}\)
\(=\dfrac{1}{2}\times\left(\dfrac{4}{1\times5}+\dfrac{4}{5\times9}+...+\dfrac{4}{181\times185}\right)\)
\(=\dfrac{1}{2}\times\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{181}-\dfrac{1}{185}\right)\)
\(=\dfrac{1}{2}\times\left(1-\dfrac{1}{185}\right)=\dfrac{1}{2}\times\dfrac{184}{185}=\dfrac{92}{185}\)
\(S=\dfrac{1}{5\times9}+\dfrac{1}{9\times13}+...+\dfrac{1}{41\times45}\)
\(\Rightarrow4S=\dfrac{4}{5\times9}+\dfrac{4}{9\times13}+...+\dfrac{4}{41\times45}\)
\(\Rightarrow4S=\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}\)
\(\Rightarrow4S=\dfrac{1}{5}-\dfrac{1}{45}\)
\(\Rightarrow4S=\dfrac{8}{45}\)
\(\Rightarrow S=\dfrac{2}{45}\)
\(=\dfrac{1}{4}\left(\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{41\cdot45}\right)\)
\(=\dfrac{1}{4}\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{8}{45}=\dfrac{2}{45}\)