K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2016

a) S = 4.(1 + 4) + 43.(1 + 4) + ... + 42999.(1 + 4) = 5.(4 + 43 + ... + 42999) chia hết cho 5

b) S = 4.(1 + 4 + 42) + 44.(1 + 4 + 42) + ... + 42998.(1 + 4 + 42) = 21.(4 + 44 + ... + 42998) chia hết cho 21

8 tháng 12 2016

s chia hết cho 25 vì trong thừa số của s có 25 đó là  5^2

s không chia hết cho 31 vì trong thừa số của s không có 31

12 tháng 1 2019

ko biết

5 tháng 4 2017

Ta có : S = 5 + 52 + 53 + ...... + 52014

              = (5 + 54) + (52 + 55) + ...... + (52010 + 52013) + (52011 + 52014)  

              = 5.(1 + 53) + 52.(1 + 53) + ..... + 52010(1 + 53) + 52011(1 + 53

              = 5.125 + 52.125 + ..... + 52010.125 + 52011.125

              = 125 (5 + 52 + ...... + 52010 + 52011) chia hết cho 125

5 tháng 4 2017

a) S=(5+54)+(52+55)+(53+56)+...+(52011+52014)=5(1+53)+52(1+53)+53(1+53)+...+52011(1+53)

 =(1+53)(5+52+53+...+52011)=126.(5+52+53+...+52011)

=> S chia hết cho 126

20 tháng 10 2016

S=\(\frac{4^{39}-1}{3}\)

b)lấy 4^39 -1 chia cho 15

\(4^{10}\)đồng dư vs 1 theo mod 15

4^30 đồng dư với 1 theo mod 15

4^39 đồng sư với  4 theo mod 15

4^39-1 đồng dư với 3 theo mod 15

\(\Rightarrow\)4^39-1=15k+3

S=\(\frac{4^{39}-1}{3}=\frac{15k+3}{3}=5k+1\)

c)5:21 dư 5

5 tháng 1 2019

Bài làm

 a)               S = \(3^0\)\(3^2\)\(3^4\)+ ......+ \(3^{2002}\)

        \(3^2\)S =  \(3^2\) + \(3^4\)\(3^6\)+ ..... + \(3^{2004}\)

  \(3^2\)S - S =  \(3^{2004}\) - \(3^0\)

  9 . S - S    =  \(3^{2004}\) - \(3^0\)

    8 . S        =  \(3^{2004}\) - \(3^0\)

      S           =  \(\frac{3^{2004}-3^0}{8}\)

5 tháng 1 2019

a. S = 30 + 32 + 34 + ... + 32002

32S  = 32( 30 + 32 + 34 + ... + 32002 )

9S    = 32 + 34 + 36... + 32004

9S - S = (32 + 34 + 36... + 32004 ) - ( 30 + 32 + 34 + ... + 32002)

8S     = 32004 - 1

   S     = (32004 - 1) : 8

b. Có S = 30 + 32 + 34 + ... + 32002 có 1002 số hạng

             = ( 30 + 32 + 34 ) + ( 36 + 38 + 310 ) + ... + ( 31998 + 32000 + 32002 ) có 334 nhóm.

             =     91                  + 36 (30 + 32 + 34 ) + ... + 31998( 30 + 32 + 34 )

             =  91                     + 36 . 91                   + ... + 31998 . 91

              =91 ( 1 + 36 + ... + 31998 ) = 7 . 13 . ( 1 + 36 + ... + 31998 

Vì ( 1 + 36 + ... + 31998 \(\in\)

\(\Rightarrow\)7 . 13 . ( 1 + 36 + ... + 31998 )  \(⋮\)

Hay S \(⋮\)7 ( đpcm )

9 tháng 11 2016

a) Ta có: A gồm có 2008 số hạng, 2008:4=52. Nhóm 4 số hạng liên tiếp với nhau được 52 nhóm như sau:

S=5(1+5+52+53)+55(1+5+52+53)+...+52005(1+5+52+53)=156(5+55+59+....+52005)

Vậy S chia hết cho 156

b) Ta có:

S=156(5+55+59+....+52005) .

Trong ngoặc gồm 52 số hạng có tận cùng là 5=> phần trong ngoặc có số tận cùng là 0

Vậy S có tận cùng là 0

6 tháng 2 2016

a ) S = 4 + 42 + 43 + 44 + ..... + 499 + 4100

S = ( 4 + 42 ) + ( 43 + 44 ) + .... + ( 497 + 498 ) + ( 499 + 4100 )

⇒ S = 4.( 1 + 4 ) + 43.( 1 + 4 ) + ...... + 497.( 1 + 4 ) + 499.( 1 + 4 )

⇒ S = 4.5 + 43.5 + ..... + 497.5 + 499.5

⇒ S = 5.( 4 + 43 + ..... + 497 + 499 )

Vì 5 ⋮ ⋮ 5 ( đpcm )

Câu b tương tự .

 

6 tháng 2 2016

Làm theo công thức nhé!!

30 tháng 6 2016

B = (1 + 3) + (32+33)+.....+(389+390)

  = 4 + 32 .(1 + 3) + .....+390.(1+3)

 = 1 .4 + 32.4 + ..... +390.4

= 4.(1 + 32 + .... +390) chia hết cho 4

6 tháng 9 2018

\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)

\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)

\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)

\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)