Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+)\(8^2=\left(2^3\right)^2=2^6\)
+)\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
Vì \(9>8\Rightarrow9^{100}>8^{100}\)hay \(3^{200}>2^{300}\)
+)\(9^{20}=\left(3^2\right)^{20}=3^{40}\)
\(27^{13}=\left(3^3\right)^{13}=3^{39}\)
Vì \(40>39\Rightarrow3^{40}>3^{39}\)hay \(9^{20}>27^{13}\)
+)\(10^{20}=10^{2.10}=\left(10^2\right)^{10}=100^{10}\)
\(2^{100}=2^{10.10}=\left(2^{10}\right)^{10}=1024^{10}\)
Vì \(100< 1024\Rightarrow100^{10}< 1024^{10}\)hay \(10^{20}< 2^{100}\)
+)\(2^{161}=2^{4.40+1}=\left(2^4\right)^{40}.2=16^{40}.2\)
Vì \(13< 16\Rightarrow13^{40}< 16^{40}\)\(\Rightarrow13^{40}< 2^{161}\)
\(S=\left(2.1\right)^2+\left(2.2\right)^2+\left(2.3\right)^2+....+\left(2.10\right)^2\)
\(\Rightarrow S=2^2.1^2+2^2.2^2+....+2^2.10^2\)
\(\Rightarrow S=2^2\left(1^2+2^3+3^2+.....+10^2\right)\)
Áp dụng giả thiết từ đề
\(\Rightarrow S=2^2.385\)
\(\Rightarrow S=4.384=1540\)
\(S=2^2+4^2+6^2+...+20^2\)
\(=1^2.4+2^2.4+3^2.4+...+10^2.4\)
\(=4.\left(1^2+2^2+3^2+...+10^2\right)\)
\(=4.385=1540\)
S = 22+42+62+...+202.
= ( 2 .1 )2 + ( 2 . 2 )2 + ( 2.3 )2+...+ ( 2.10 )2
= 22 . 12 + 22 . 22 + 22 . 32 + ... + 22 . 102
= 22 . ( 12 + 22 +32 + ... +102 )
= 4 . 385
= 1540
( Thiếu đề bài nhé )
S = 22 + 42 + 62 + ... + 202
= 22.(12 + 22 + 32 + ... + 102)
Đặt C = 12 + 22 + 32 + ... + 102
= 1.1 + 2.2 + 3.3 + ... + 10.10
= 1.(2 - 1) + 2.(3 - 1) + 3.(4 - 1) + ... + 10.(11 - 1)
= (1.2 + 2.3 + 3.4 + ... + 10.11) - (1 + 2 + 3 + ... + 10)
= 1.2 + 2.3 + 3.4 + .. + 10.11 - 55
Đặt D = 1.2 + 2.3 + 3.4 + .. + 10.11
=> 3D = 1.2.3 + 2.3.3 + 3.4.3 + ... + 10.11.3
=> 3D = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 10.11.(12 - 9)
=> 3D = 1.23 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 10.11.12 - 9.10.11
=> 3D = 10.11.12
=> 3D = 1320
=> D = 440
Thay D vào C ta có
C = 440 - 55 = 385
Thay C vào S
=> S = 385 x 4 = 1540
\(1^2+2^2+3^2+...+10^2=385\)
Mà \(1^2.2=2^2\), \(2^2.2=4^2\)
\(\Rightarrow\left(1+2^2+3^2+...+10^2\right).2=S\)
\(\Rightarrow S=385.2=770\)
S=2^2+4^2+6^2+...+20^2
=(1.2)^2+(2.2)^2+(2.3)^2+...+(2.10)^2
=1^2.2^2+2^2.2^2+2^2.3^2+...+2^2.10^2
=2^2.(1^2+2^2+3^3+...+10^2)
=2^2.385=4.385=1540
đề có thiếu sót nhé,tớ sửa vào rồi đấy
S = 22 + 42 + .........+ 202
S = 22 . 1 + 22 . 22 + ..... + 22 . 102
S = 22 . (1 + 22 + ... + 102)
S = 4 . S
S = 4 . 485
S = 1540
S = 22 + 42 + 62 +......... +202
Trả lời :
S = 22 + 42 + .........+ 202
S = 22 . 1 + 22 . 22 + ..... + 22 . 102
S = 22 . (1 + 22 + ... + 102)
S = 4 . S
S = 4 . 485
S = 1940