K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

= 56348

12 tháng 11 2017

sao pn pít?

Ta có: \(S_{m-n}=\frac{\left(\sqrt{2}+1\right)^m}{\left(\sqrt{2}+1\right)^n}+\frac{\left(\sqrt{2}-1\right)^m}{\left(\sqrt{2}-1\right)^n}\)

\(=\left(\sqrt{2}+1\right)^m\cdot\left(\sqrt{2}-1\right)^n+\left(\sqrt{2}-1\right)^m\left(\sqrt{2}+1\right)^n\)

Do đó:

\(S_{m+n}+S_{m-n}=\left(\sqrt{2}+1\right)^{m+n}+\left(\sqrt{2}-1\right)^{m+n}+\left(\sqrt{2}+1\right)^m\cdot\left(\sqrt{2}-1\right)^n+\left(\sqrt{2}-1\right)^m\cdot\left(\sqrt{2}+1\right)^n\)

\(=\left(\sqrt{2}+1\right)^m\left[\left(\sqrt{2}+1\right)^n+\left(\sqrt{2}-1\right)^n\right]+\left(\sqrt{2}-1\right)^m\cdot\left[\left(\sqrt{2}-1\right)^n+\left(\sqrt{2}+1\right)^n\right]\)

\(=\left[\left(\sqrt{2}+1\right)^n+\left(\sqrt{2}-1\right)^n\right]\cdot\left[\left(\sqrt{2}+1\right)^m+\left(\sqrt{2}-1\right)^m\right]\)

\(=S_m\cdot S_n\)(đpcm)

28 tháng 8 2016

Ta có S m-n = (√2 + 1)/(√2 + 1)+ (√2 - 1)m /(√2 - 1)n = (√2 + 1)m (√2 - 1)n + (√2 - 1)m (√2 + 1)n

Từ đó 

S m+n + S m-n = (√2 + 1)m+n + (√2 - 1)m+n +(√2 + 1)m (√2 - 1)n + (√2 - 1)m (√2 + 1)

= (√2 + 1)m [(√2 + 1)+ (√2 -1)n] + (√2 - 1)m [(√2 - 1)n + (√2 + 1)n]

= [(√2 + 1)n + (√2 - 1)n] [(√2 + 1)m + (√2 - 1)m]

= S​ .S n

28 tháng 8 2016

sorry mk ko bít!!! ^^

6476575756876982525435465658768768676968256346564576576576

31 tháng 1 2017

a) 10n + 1 - 6.10n

= 10n . 10 - 6 . 10n

= 10n . (10 - 6)

= 10n . 4

b) 2n + 3 + 2n + 2 - 2n + 1 + 2n

= 2n . 23 + 2n . 22 - 2n . 2 + 2n . 1

= 2n . (8 + 4 - 2 + 1)

= 2n . 11