\(\dfrac{\sqrt{2+\sqrt{3}+\sqrt{2-\sqrt{3}}}}{\sqrt{2+\sqrt{3}-\sqrt{2-\sqrt{3}}}}+\dfrac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 7 2018

Lời giải:

Đặt \(\sqrt{2+\sqrt{3}+\sqrt{2-\sqrt{3}}}=a; \sqrt{2+\sqrt{3}-\sqrt{2-\sqrt{3}}}=b\)

Có:

\(a^2+b^2=(2+\sqrt{3}+\sqrt{2-\sqrt{3}})+(2+\sqrt{3}-\sqrt{2-\sqrt{3}})=2(2+\sqrt{3})\)

\(=4+2\sqrt{3}=3+1+2\sqrt{3.1}=(\sqrt{3}+1)^2\)

\(ab=\sqrt{(2+\sqrt{3}+\sqrt{2-\sqrt{3}})(2+\sqrt{3}-\sqrt{2-\sqrt{3}})}\)

\(=\sqrt{(2+\sqrt{3})^2-(2-\sqrt{3})}=\sqrt{5+5\sqrt{3}}\)

Như vậy:

\(\frac{\sqrt{2+\sqrt{3}+\sqrt{2-\sqrt{3}}}}{\sqrt{2+\sqrt{3}-\sqrt{2-\sqrt{3}}}}+\frac{\sqrt{2+\sqrt{3}-\sqrt{2-\sqrt{3}}}}{\sqrt{2+\sqrt{3}+\sqrt{2-\sqrt{3}}}}=\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\)

\(=\frac{(\sqrt{3}+1)^2}{\sqrt{5+5\sqrt{3}}}=\frac{(\sqrt{3}+1)^2}{\sqrt{5}.\sqrt{\sqrt{3}+1}}=\frac{(\sqrt{3}+1)^{1.5}}{\sqrt{5}}\)

2 tháng 9 2017

1/

\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)

\(=\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{1+\sqrt{2}}-\dfrac{4-3}{2-\sqrt{3}}\)

\(=\sqrt{3}+2+\sqrt{2}-\dfrac{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}{2-\sqrt{3}}\)

\(=\sqrt{3}+2+\sqrt{2}-2-\sqrt{3}\)

\(=\sqrt{2}\)

2/

\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right).\left(\sqrt{5}-\sqrt{2}\right)\)

\(=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\dfrac{\left(\sqrt{5}\right)^2}{\sqrt{5}}\right).\left(\sqrt{5}-\sqrt{2}\right)\)

\(=-\left(\dfrac{\left(\sqrt{5}\right)^2}{\sqrt{5}}-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right).\left(\sqrt{5}-\sqrt{2}\right)\)

\(=-\left(\sqrt{5}+\sqrt{2}\right).\left(\sqrt{5}-\sqrt{2}\right)\)

\(=-\left(5-2\right)=-3\)

#F.C

3 tháng 9 2017

máy câu còn lại thì sao

16 tháng 10 2018

2]\(\sqrt{3}\)+1+\(\sqrt{4-4\sqrt{3}+3}\)=\(\sqrt{3}+1+\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{3}+1+2-\sqrt{3}=3\)

4\(\left(\dfrac{\sqrt{3}.\left(2+\sqrt{3}\right)+2.\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right).\left(2+\sqrt{3}\right)}\right)=\dfrac{\sqrt{3}.\left(2+\sqrt{3}\right)+2.\left(2-\sqrt{3}\right)}{1}\)

19 tháng 10 2022

1: \(=2\sqrt{7}-12\sqrt{7}+15\sqrt{7}+27\sqrt{7}=32\sqrt{7}\)

3: \(=\sqrt{5}-2-\sqrt{14+6\sqrt{5}}\)

\(=\sqrt{5}-2-3-\sqrt{5}=-5\)

4: \(=2\sqrt{3}+3+4-2\sqrt{3}=7\)

5: \(=3-\sqrt{2}+3+\sqrt{2}+4-3=7\)

6: \(=\sqrt{\dfrac{6+2\sqrt{5}}{4}}+\sqrt{\dfrac{14-6\sqrt{5}}{4}}\)

\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}}{2}=\dfrac{4}{2}=2\)

8: \(=\sqrt{5}-1+\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{4}}-\sqrt{\dfrac{\left(3+\sqrt{5}\right)^2}{4}}\)

\(=\sqrt{5}-1+\dfrac{3-\sqrt{5}}{2}-\dfrac{3+\sqrt{5}}{2}\)

\(=\dfrac{2\sqrt{5}-2+3-\sqrt{5}-3-\sqrt{5}}{2}=\dfrac{-2}{2}=-1\)

20 tháng 7 2018

\(A=\dfrac{\sqrt{3}-3}{\sqrt{2-\sqrt{3}}+2\sqrt{2}}+\dfrac{\sqrt{3}+3}{\sqrt{2+\sqrt{3}}-2\sqrt{2}}\)

\(A=\dfrac{\sqrt{2}\left(\sqrt{3}-3\right)}{\sqrt{2}.\left(\sqrt{2-\sqrt{3}}+2\sqrt{2}\right)}+\dfrac{\sqrt{2}.\left(\sqrt{3}+3\right)}{\sqrt{2}.\left(\sqrt{2+\sqrt{3}}-2\sqrt{2}\right)}\)

\(A=\dfrac{\sqrt{6}-3\sqrt{2}}{\sqrt{4-2\sqrt{3}}+4}+\dfrac{\sqrt{6}+3\sqrt{2}}{\sqrt{4+2\sqrt{3}}-4}\)

\(A=\dfrac{\sqrt{6}-3\sqrt{2}}{\sqrt{\left(\sqrt{3}-1\right)^2}+4}+\dfrac{\sqrt{6}+3\sqrt{2}}{\sqrt{\left(\sqrt{3}+1\right)^2}-4}\)

\(A=\dfrac{\sqrt{6}-3\sqrt{2}}{\sqrt{3}-1+4}+\dfrac{\sqrt{6}+3\sqrt{2}}{\sqrt{3}+1-4}\)

\(A=\dfrac{\sqrt{3}\left(\sqrt{2}-\sqrt{6}\right)}{\sqrt{3}\left(1+\sqrt{3}\right)}+\dfrac{\sqrt{3}\left(\sqrt{2}+\sqrt{6}\right)}{\sqrt{3}\left(1-\sqrt{3}\right)}\)

\(A=\dfrac{\sqrt{2}-\sqrt{6}}{1+\sqrt{3}}+\dfrac{\sqrt{2}+\sqrt{6}}{1-\sqrt{3}}=\dfrac{\left(\sqrt{2}-\sqrt{6}\right)\left(1-\sqrt{3}\right)+\left(\sqrt{2}+\sqrt{6}\right)\left(1+\sqrt{3}\right)}{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}\)

\(A=\dfrac{\sqrt{2}-\sqrt{6}-\sqrt{6}+3\sqrt{2}+\sqrt{2}+\sqrt{6}+\sqrt{6}+3\sqrt{2}}{1-3}=\dfrac{8\sqrt{2}}{-2}=-4\sqrt{2}\)

* \(B=\dfrac{\sqrt{11+2\sqrt{30}}-\sqrt{11-2\sqrt{30}}}{\sqrt{5}}\) \(=\dfrac{\sqrt{6+2.\sqrt{6}.\sqrt{5}+5}-\sqrt{6-2.\sqrt{6}.\sqrt{5}+5}}{\sqrt{5}}\)\(=\dfrac{\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}}{\sqrt{5}}\)

\(=\dfrac{\sqrt{6}+\sqrt{5}-\sqrt{6}+\sqrt{5}}{\sqrt{5}}=\dfrac{2\sqrt{5}}{\sqrt{5}}=2\)

* \(C=2\sqrt{3+\sqrt{5}}-\left(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}\right)\)

Đặt:\(y=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}\Rightarrow y^2=4+\sqrt{15}+4-\sqrt{15}+2\sqrt{\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}=8+2=10\Rightarrow y=\sqrt{10}\)

Suy ra: \(C=\sqrt{12+4\sqrt{5}}-y=\sqrt{\left(\sqrt{10}+\sqrt{2}\right)^2}-\sqrt{10}=\sqrt{10}+\sqrt{2}-\sqrt{10}=\sqrt{2}\)* \(D=\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\dfrac{\left(\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2+\sqrt{3}}\right)+\left(\sqrt{2-\sqrt{3}}\right)\left(\sqrt{2-\sqrt{3}}\right)}{\left(\sqrt{2-\sqrt{3}}\right)\left(\sqrt{2+\sqrt{3}}\right)}=\dfrac{2+\sqrt{3}+2-\sqrt{3}}{1}=4\)

16 tháng 10 2018

ta có : \(A=\left(\dfrac{3}{2}\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}\right)\left(3\sqrt{\dfrac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)

\(=\sqrt{\dfrac{2}{3}}\left(\dfrac{9}{2}+2-6\right)\sqrt{\dfrac{2}{3}}\left(3-3\sqrt{2}-3\right)\)

\(\dfrac{2}{3}\dfrac{1}{2}\left(-3\sqrt{2}\right)=-\sqrt{2}\)

ta có : \(B=\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-\dfrac{\sqrt{5}-1}{2}=\dfrac{\sqrt{6+2\sqrt{5}}}{2}-\dfrac{\sqrt{5}-1}{2}\)

\(=\dfrac{\sqrt{\left(\sqrt{5}+1\right)^2}}{2}-\dfrac{\sqrt{5}-1}{2}=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{2}=1\)

ta có : \(C=\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)

\(=\dfrac{\sqrt{2}}{2+\sqrt{4+2\sqrt{3}}}+\dfrac{\sqrt{2}}{2-\sqrt{4-2\sqrt{3}}}\)

\(=\dfrac{\sqrt{2}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\dfrac{\sqrt{2}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\dfrac{\sqrt{2}}{3+\sqrt{3}}+\dfrac{\sqrt{2}}{3-\sqrt{3}}=\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)+\sqrt{2}\left(\sqrt{3}+1\right)}{\sqrt{3}\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

\(=\dfrac{2\sqrt{6}}{2\sqrt{3}}=\sqrt{\dfrac{6}{3}}=\sqrt{2}\)

31 tháng 5 2017

a ) \(\dfrac{2}{\sqrt{3}-1}\) - \(\dfrac{2}{\sqrt{3}+1}\) = \(\dfrac{2\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

= \(\dfrac{2\sqrt{3}+2-2\sqrt{3}+2}{3-1}\) = \(\dfrac{4}{2}\) = 2

b) \(\dfrac{5}{12\left(2\sqrt{5}+3\sqrt{2}\right)}\) - \(\dfrac{5}{12\left(2\sqrt{5}-3\sqrt{2}\right)}\)

= \(\dfrac{5\left(2\sqrt{5}-3\sqrt{2}\right)-5\left(2\sqrt{5}+3\sqrt{2}\right)}{12\left(2\sqrt{5}+3\sqrt{2}\right)\left(2\sqrt{5}-3\sqrt{2}\right)}\)

= \(\dfrac{10\sqrt{5}-15\sqrt{2}-10\sqrt{5}-15\sqrt{2}}{12\left(20-18\right)}\)

= \(\dfrac{-30\sqrt{2}}{24}\) = \(\dfrac{-15\sqrt{2}}{12}\) = \(\dfrac{-5\sqrt{2}}{4}\)

c) \(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}\) +\(\dfrac{5-\sqrt{5}}{5+\sqrt{5}}\) = \(\dfrac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\)

= \(\dfrac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\) = \(\dfrac{60}{20}\) = 3

31 tháng 5 2017

d) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3+1}}-1}\) - \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3+1}}+1}\)

= \(\dfrac{\sqrt{3}}{\sqrt{2}-1}\) - \(\dfrac{\sqrt{3}}{\sqrt{2}+1}\) = \(\dfrac{\sqrt{3}\left(\sqrt{2}+1\right)-\sqrt{3}\left(\sqrt{2}-1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)

= \(\dfrac{\sqrt{6}+\sqrt{3}-\sqrt{6}+\sqrt{3}}{2-1}\) = \(2\sqrt{3}\)

21 tháng 6 2017

b) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

= \(\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) = \(1+\sqrt{2}\)

21 tháng 6 2017

a) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\) = \(\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}\) = \(\dfrac{\sqrt{2}}{2}\)

10 tháng 7 2017

bạn nên tự nghiên cứu rồi giải đi chứ bạn đưa 1 loạt thế thì ai rảnh mà giải, với lại cứ bài gì không biết chưa chịu suy nghĩ đã hỏi rồi thì tiến bộ sao được, đúng không

30 tháng 10 2017

\(\frac{1}{(n+1)\sqrt{n}+n\sqrt{n+1} }=\frac{1}{\sqrt{n(n+1)}(\sqrt{n+1)+\sqrt{n}) } } =\frac{\sqrt{n+1}-\sqrt{n} }{\sqrt{n(n+1)} } =\frac{1}{\sqrt{n} }-\frac{1}{\sqrt{n+1} } \)

=>K=1-\( \frac{1}{5} \)=\(\frac{4}{5} \)