K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

Bài quá dễ mà đăng lên làm gì?

3 tháng 8 2016

A= (4x2 + y2).[(2x)2 - y2] = (4x2 +y2)(4x2 - y2) = (4x2)2 _ (y2)= 16x4 - y4

3 tháng 10 2020

1. Ta có : \(-x^2+4x+4=-\left(x^2-4x-4\right)=-\left(x^2-2\cdot x\cdot2+2^2\right)+8\)

\(=-\left(x-2\right)^2+8\)

Vì \(\left(x-2\right)^2\ge0\forall x\)

=> \(-\left(x-2\right)^2\le0\forall x\)

=> \(-\left(x-2\right)^2+8\le8\forall x\)

Dấu " = " xảy ra khi và chỉ khi -(x - 2)2 = 0 => x = 2

Vậy GTLN là 8 khi x = 2

2. \(4-16x^2-8x=16x^2-8x-4\)

\(=\left[\left(4x\right)^2-2\cdot4x\cdot1+1^2\right]-5\)

\(=\left(4x-1\right)^2-5\)

Vì \(\left(4x-1\right)^2\ge0\forall x\)

=> \(\left(4x-1\right)^2-5\le-5\forall x\)

Dấu " = " xảy ra khi và chỉ khi (4x - 1)2 = 0 => x = 1/4

Vậy GTLN là -5 khi x = 1/4

2. Ta có : \(x^2+2x+y^2-6y+10=0\)

=> \(\left(x^2+2x+1\right)+\left(y^2-6y+9\right)=0\)

=> \(\left(x+1\right)^2+\left(y-3\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+1\right)^2+\left(y-3\right)^2\ge0\forall x,y\)

Dấu " = " xảy ra khi và chỉ khi

+) (x + 1)2 = 0 => x = -1

+) (y - 3)2 = 0 => y = 3

Vậy GTNN bằng 0 khi x = -1,y = 3

Bài 3 làm nốt nhé

P/S : K chắc :<

3 tháng 10 2020

Giải thích các bước giải:CÂU 3 

3a = (4-1) (4+1) (4^2+1) (4^4+1) (4^8+1) (4^16+1)

=(4^2-1) (4^2+1) (4^8+1) (4616+1)

=(4^8-1) (4^8+1 ) (4^16+1)

=(4^16-1)(4^16+1)

=4^32-1 =b ( dpcm)

câu 2: (x+1)^2 +(y-3)^2=0 nếu x=-1 và ngược lại

Bài 2: Vượt chướng ngại vậtCâu 2.1:Rút gọn biểu thức (x + y + z)2 - x2 - y2 - z2 ta được:a. −2(xy + yz + zx)b. 0c. xy + yz + zxd. 2(xy + yz + zx)Câu 2.2:Số giá trị nguyên của x để biểu thức  đạt giá trị nguyên là:a. 8b. 4c. 5d. 6Câu 2.3:Rút gọn biểu thức  ta được:a. a - 1/ab. (a + 1)/ac. (a - 1)/ad. a + 1/aCâu 2.4:Số nghiệm của phương trình:  là:a. 3b. 0c. 1d. 2Câu 2.5:Cho tam giác ABC vuông cân tại C. M...
Đọc tiếp

Bài 2: Vượt chướng ngại vật

Câu 2.1:
Rút gọn biểu thức (x + y + z)2 - x- y- zta được:

  • a. −2(xy + yz + zx)
  • b. 0
  • c. xy + yz + zx
  • d. 2(xy + yz + zx)

Câu 2.2:

Số giá trị nguyên của x để biểu thức  đạt giá trị nguyên là:

  • a. 8
  • b. 4
  • c. 5
  • d. 6

Câu 2.3:

Rút gọn biểu thức  ta được:

  • a. a - 1/a
  • b. (a + 1)/a
  • c. (a - 1)/a
  • d. a + 1/a

Câu 2.4:

Số nghiệm của phương trình:  là:

  • a. 3
  • b. 0
  • c. 1
  • d. 2

Câu 2.5:

Cho tam giác ABC vuông cân tại C. M là một điểm trên cạnh AB. Kẻ MI vuông góc với AC, MK vuông góc với BC. Gọi O là trung điểm của AB. Khi đó OIK là tam giác gì?

  • a. Cân tại O
  • b. Vuông cân tại O
  • c. Vuông tại O
  • d. Vuông cân tại K

Bài 3: Đỉnh núi trí tuệ

Câu 3.1:
Phân tích đa thức 8x- 2 thành nhân tử ta được:

  • a. 2(4x - 1)(4x + 1)
  • b. 2(2x - 1)(2x + 1)
  • c. (2x - 1)(2x + 1)
  • d. 2(x - 1)(4x + 1)

Câu 3.2:

Thực hiện phép tính 5xvới 4x- 2x + 5 ta được:

  • a. 20x- 10x + 25x2
  • b. 20x- 10x3 + 25
  • c. 20x+ 10x3 + 25x2
  • d. 20x- 10x3 + 25x2

Câu 3.3:

Điều kiện xác định của biểu thức:   là:

  • a. x ≠ ± 3/2
  • b. x ≠ 1,5
  • c. x ≠ ± 2/3
  • d. x ≠ -1,5

Câu 3.4:

Giá trị của biểu thức   tại x = 3 là:

  • a. -1
  • b. 1
  • c. 2
  • d. -2

Câu 3.5:

Số giá trị của x để phân thức  có giá trị bằng 2 là:

  • a. 1
  • b. 3
  • c. 2
  • d. 0

Câu 3.6:

Cho biểu thức 
Giá trị của biểu thức P tại x thỏa mãn x2 - 6x + 9 = 0 là:

  • a. -15
  • b. 15
  • c. 5
  • d. -5

Câu 3.7:

Để P = x+ x- 11x + m chia hết cho Q = x - 2 thì khi đó:

  • a. m = 10
  • b. m = 12
  • c. m = -10
  • d. m = 22

Câu 3.8:

Giá trị của biểu thức A = 20- 19+ 18- 17+ ...... + 2- 1là:

  • a. 120
  • b. 102
  • c. 201
  • d. 210

Câu 3.9:

Giá trị lớn nhất của biểu thức  là:

  • a. 3
  • b. 2
  • c. 6
  • d. 4

Câu 3.10:

Biết b ≠ ± 3a và 6a- 15ab + 5b= 0
Khi đó giá trị của biểu thức  là:

  • a. 0
  • b. 2
  • c. 1
  • d. 3   .

đây là bài của chị mk gúp mình với mk tick cho

 

0
10 tháng 8 2016
  • x2.(x3-x2+x-1)
  • x.( x3-3x2-1)+3
  • x.(x2-xy-y2)

    Tìm x:

      x3-16x = 0

     => x.(x2-16) = 0

     => x = 0 hay x2-16 = 0

     => x = 0 hay x2 = 0+16

     => x = 0 hay x2 = 16

     => x = 0 hay x   = 4 hay x = -4

     

2 tháng 12 2019

3x^2-2x+1 3x^4-8x^3-10x^2+8x-5 x^2-2x-16/3 3x^4-2x^3+x^2 -6x^3-12x^2+8x-5 -6x^3+4x^2-2x -16x^2+10x-5 -16x^2+32/3x-16/3 -2/3x+1/3

Vậy 

  • (3x4-8x3-10x2+8x-5):(3x2-2x+1) = \(x^2-2x-\frac{16}{3}\)dư \(\frac{-2}{3}x+\frac{1}{3}\)
2 tháng 12 2019

x^2-1 x^4-2x^3+2x-1 x^2-2x+1 x^4-x^2 -2x^3+x^2+2x-1 -2x^3+2x x^2-1 x^2-1 0

6 tháng 7 2016

1. undefined

 

1 tháng 7 2016

1.\(x^2-2x-4y^2-4y=\left(x+2y\right)\left(x-2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

2.\(x^4+2x^3-4x-4=\left(x^2+2\right)\left(x^2-2\right)+2x\left(x^2-2\right)=\left(x^2-2\right)\left(x^2+2x-2\right)\)

3.\(3x^2-3y^2-2\left(x-y\right)^2=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\left(x-y\right)=\left(x-y\right)\left(3x+3y-2x+2y\right)\)\(=\left(x-y\right)\left(x+5y\right)\)

4.\(x^3-4x^2-9x+36=x^2\left(x-4\right)-9\left(x-4\right)=\left(x-3\right)\left(x+3\right)\left(x-4\right)\)

5.\(\left(x-1\right)\left(2x+1\right)+3\left(x-1\right)\left(x+2\right)\left(2x+1\right)=\left(x-1\right)\left(2x+1\right)\left(1+3x+6\right)\)\(=\left(x-1\right)\left(2x+1\right)\left(3x+7\right)\)

6.\(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)=3\left(2x+1\right)-\left(2x-5\right)\left(2x+1\right)\)\(=\left(2x+1\right)\left(3-2x-5\right)=\left(2x+1\right)\left(-2-2x\right)=-2\left(2x+1\right)\left(x+1\right)\)

7.\(\left(x-5\right)^2+\left(x+5\right)\left(x-5\right)+\left(x-5\right)\left(2x+1\right)=\left(x-5\right)\left(x-5+x+5+2x+1\right)\)\(=\left(x-5\right)\left(4x+1\right)\)

8.\(\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)=\left(3x-2\right)\left(3x-6\right)=3\left(3x-2\right)\left(x-2\right)\)