K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2015

\(\left(\frac{1}{x^2-xy}-\frac{3y^2}{x^4-xy^3}-\frac{9}{x^3+x^2y+xy^2}\right).\left(y+\frac{x^2}{x+y}\right)\)

\(=\left(\frac{1}{x.\left(x-y\right)}-\frac{3y^2}{x.\left(x^3-y^3\right)}-\frac{9}{x.\left(x^2+xy+y^2\right)}\right).\left(\frac{y.\left(x+y\right)}{x+y}+\frac{x^2}{x+y}\right)\)

\(=\left(\frac{1}{x.\left(x-y\right)}-\frac{3y^2}{x.\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{9}{x.\left(x^2+xy+y^2\right)}\right).\left(\frac{y^2+xy}{x+y}+\frac{x^2}{x+y}\right)\)

\(=\left(\frac{x^2+xy+y^2}{x.\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{3y^2}{x.\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{9x-9y}{x.\left(x-y\right)\left(x^2+xy+y^2\right)}\right).\left(\frac{x^2+xy+y^2}{x+y}\right)\)

\(=\frac{x^2+xy-2y^2-9x+9y}{x.\left(x-y\right)\left(x^2+xy+y^2\right)}.\frac{x^2+xy+y^2}{x+y}\)

làm tip nha bận rồi      

16 tháng 12 2019

Rút gọn giùm mik nha

20 tháng 2 2017

\(\left(\frac{1}{x^2-xy}-\frac{3y^2}{x^4-xy^3}-\frac{y}{x^3+x^2y+xy^2}\right):\frac{x+y}{x^2+xy+y^2}\)

=\(\left(\frac{1}{x\left(x-y\right)}-\frac{3y^2}{x\left(x^3-y^3\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right):\frac{x+y}{x^2+xy+y^2}\)

=\(\left(\frac{1}{x\left(x-y\right)}-\frac{3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right):\frac{x+y}{x^2+xy+y^2}\)

=\(\left(\frac{x^2+xy+y^2-3y^2-y\left(x-y\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\right).\frac{x^2+xy+y^2}{x+y}\)

=\(\left(\frac{x^2+xy+-2y^2-xy+y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\right).\left(\frac{x^2+xy+y^2}{x+y}\right)\)

=\(\left(\frac{x^2-y^2}{x\left(x-y\right)}\right).\left(\frac{1}{x+y}\right)\)=\(\frac{\left(x-y\right)\left(x+y\right)}{x\left(x-y\right)\left(x+y\right)}=\frac{1}{x}\)

16 tháng 3 2017

Mình vs bạn trùng họ và tên rồi thì phải....!hehe

17 tháng 10 2019

\(A=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y^2-xy}{x-3y}+\left(\frac{x}{2}-\frac{x^2-xy}{x-2y}\right):\frac{xy+y^2}{2x-4y}\)

\(=\frac{4y^2-\left(x-y\right)^2}{y^2\left(x-y\right)}.\frac{y^2-xy}{x-3y}+\frac{x\left(x-2y\right)-2\left(x^2-xy\right)}{2\left(x-2y\right)}.\frac{2x-4y}{xy+y^2}\)

\(=\frac{3y^2+2xy-x^2}{y^2\left(x-y\right)}.\frac{y^2-xy}{x-3y}+\frac{-x^2}{2\left(x-2y\right)}.\frac{2x-4y}{xy+y^2}\)

\(=\frac{\left(x+y\right)\left(3y-x\right)}{y^2\left(x-y\right)}.\frac{y\left(y-x\right)}{x-3y}-\frac{x^2}{2\left(x-2y\right)}.\frac{2\left(x-2y\right)}{y\left(x+y\right)}\)

\(=\frac{\left(x+y\right)}{y}-\frac{x^2}{y\left(x+y\right)}\)

\(=\frac{\left(x+y\right)^2-x^2}{y\left(x+y\right)}=\frac{2xy+y^2}{y\left(x+y\right)}=\frac{2x+y}{x+y}\)

Giờ chỉ cần thế x, y vô nữa là xong nhé.

17 tháng 10 2019

\(A=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y^2-xy}{x-3y}\)\(+\left(\frac{x}{2}-\frac{x^2-xy}{x-2y}\right):\frac{xy+y^2}{2x-4y}\)

\(=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y\left(y-x\right)}{x-3y}\)\(+\left(\frac{x}{2}-\frac{x\left(x-y\right)}{x-2y}\right):\frac{y\left(x+y\right)}{2\left(x-2y\right)}\)

\(=\frac{4y\left(y-x\right)}{\left(x-y\right)\left(x-3y\right)}-\frac{\left(x-y\right)y\left(y-x\right)}{y^2\left(x-3y\right)}\)\(+\frac{x.2\left(x-2y\right)}{2.y\left(x+y\right)}-\frac{x\left(x-y\right).2\left(x-2y\right)}{\left(x-2y\right).y\left(x+y\right)}\)

\(=\frac{-4y}{x-3y}+\frac{\left(x-y\right)^2}{y\left(x-3y\right)}+\frac{x\left(x-2y\right)}{y\left(x+y\right)}-\frac{2x\left(x-y\right)}{y\left(x+y\right)}\)

\(=\frac{-4y^2+x^2-2xy+y^2}{y\left(x-3y\right)}+\frac{x^2-2xy-2x^2+2xy}{y\left(x+y\right)}\)

\(=\frac{x^2-2xy-3y^2}{y\left(x-3y\right)}+\frac{-x^2}{y\left(x+y\right)}\)

\(=\frac{x^2+xy-3xy-3y^2}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)

\(=\frac{x\left(x+y\right)-3y\left(x+y\right)}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)

\(\frac{\left(x+y\right)\left(x-3y\right)}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)

\(=\frac{x+y}{y}-\frac{x^2}{y\left(x+y\right)}=\frac{\left(x+y\right)^2-x^2}{y\left(x+y\right)}\)

\(=\frac{x^2-2xy+y^2-x^2}{y\left(x+y\right)}=\frac{-2xy+y^2}{y\left(x+y\right)}\)

\(=\frac{y\left(y-2x\right)}{y\left(x+y\right)}=\frac{y-2x}{x+y}\)

Thay \(x=\frac{1}{2};y=\frac{1}{3}\)vào A ta có :

\(A=\frac{\frac{1}{3}-2.\frac{1}{2}}{\frac{1}{2}+\frac{1}{3}}=\frac{\frac{1}{3}-1}{\frac{3}{6}+\frac{2}{6}}=\frac{2}{3}:\frac{5}{6}=\frac{2.6}{3.5}=\frac{4}{5}\)

Vậy \(A=\frac{4}{5}\)tại \(x=\frac{1}{2};y=\frac{1}{3}\)

25 tháng 7 2021

a, mình nghĩ đề là cm đẳng thức nhé 

\(VT=\left(5x^4-3x^3+x^2\right):3x^2=\frac{5x^4}{3x^2}-\frac{3x^3}{3x^2}+\frac{x^2}{3x^2}=\frac{5}{3}x^2-x+\frac{1}{3}=VP\)

Vậy ta có đpcm 

b, \(VT=\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=\frac{5xy^2}{-xy}+\frac{9xy}{-xy}-\frac{x^2y^2}{-xy}\)

\(=-5y-9+xy=VP\)

Vậy ta có đpcm 

c, \(VT=\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=\frac{x^3y^3}{x^2y^2}-\frac{x^2y^3}{x^2y^2}-\frac{x^3y^2}{x^2y^2}=xy-y-x=VP\)

Vậy ta có đpcm