\(\frac{a.\left(b+c\right)-b-1}{b\left(a-1\right)+a-1}\)     (a,b 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

\(\frac{a.\left(b+c\right)-b-1}{b.\left(a-1\right)+a-1}=\frac{ab+ac-b-1}{ab-b+a-1}\)

\(=\frac{ab-b-1+a+\left(a-1\right).c}{ab-b+a-1}=1+\frac{\left(a-1\right).c}{ab-b+a-1}\)

\(=1+\frac{\left(a-1\right).c}{b.\left(a-1\right)+\left(a-1\right)}=1+\frac{\left(a-1\right).c}{\left(b+1\right).\left(a-1\right)}\)

11 tháng 8 2017

\(=1+\frac{c}{b+1}\)

26 tháng 6 2016

a)\(=\frac{ab+a-b-1}{ab-b+a-1}=1\)(Nhân phá ngoặc)

26 tháng 6 2016

b)\(=\frac{2a+2ab-b-1}{6ab-3b+6a-3}\)(Nhân phá ngoặc)

\(=\frac{2ab+2a-b-1}{3\left(2ab+2a-b-1\right)}=\frac{1}{3}\)

25 tháng 7 2020

\(S=\frac{2a+2ab-b-1}{3b\left(2a-1\right)+6a-3}\\ =\frac{2a\left(b+1\right)-\left(b+1\right)}{3b\left(2a-1\right)+3\left(2a-1\right)}\\ =\frac{\left(2a-1\right)\left(b+1\right)}{3\left(b+1\right)\left(2a-1\right)}\\=\frac{1}{3}\)

7 tháng 5 2019

\(A=\left(\frac{a+b}{b}\right).\left(\frac{b+c}{c}\right).\left(\frac{a+c}{a}\right)\)

Vì \(a+b+c=0\)

\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)

\(\Rightarrow A=\frac{-c}{b}.\left(\frac{-a}{c}\right).\left(\frac{-b}{a}\right)\)

\(\Rightarrow A=-1\)

7 tháng 5 2019

toán nâng cao ak bn

15 tháng 10 2016

ket qua la dech biet ma tra loi

18 tháng 7 2017

Áp dụng t/c dãy tỉ số = nhau

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) 

\(\Rightarrow\frac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\) 

Tương tự \(b+c=2a;;c+a=2b\) 

\(\Rightarrow D=\left(\frac{a+b}{a}\right)\left(\frac{b+c}{b}\right)\left(\frac{c+a}{c}\right)=\left(\frac{2c}{a}\right)\left(\frac{2a}{b}\right)\left(\frac{2b}{c}\right)=8\)

18 tháng 7 2017

Theo đề ta có :

\(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{a+c-b}{b}+2\)

\(\Rightarrow\frac{a+b-c+2c}{c}=\frac{b+c-a+2a}{a}=\frac{a+c-b+2b}{b}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(\Rightarrow\left(a+b+c\right).\frac{1}{c}=\left(a+b+c\right)\frac{1}{c}=\left(a+b+c\right)\frac{1}{b}\)

(vì  \(a\ne b\ne c\ne0\) \(\frac{\Rightarrow1}{a}\ne\frac{1}{b}\ne\frac{1}{c}\ne0\) \(\Rightarrow a+b+c=0\))

* a+b+c=0

=>a+b=-c ; b+c=-a ; a+c =-b

\(D=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\)

\(=\frac{a+b}{a}.\frac{b+c}{b}.\frac{a+c}{c}=\frac{-c.-a.-b}{a.b.c}=\frac{-1.\left(a.b.c\right)}{a.b.c}=-1\)

Vậy : D=-1

21 tháng 12 2019

Từ \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{1}{2}\left(\frac{a+b}{ab}\right)\)

\(\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\)

\(\Rightarrow2ab=c.\left(a+b\right)\)

\(\Rightarrow ab+ab=ac+bc\)

\(\Rightarrow ab-bc=ac-ab\)

\(\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)

6 tháng 1 2017

ta có: \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(=\frac{1}{c}\times2=\frac{1}{a}+\frac{1}{b}\)

\(=\frac{2}{c}=\frac{1}{a}+\frac{1}{b}\)

\(=\frac{2}{c}=\frac{b+a}{ab}\)

= \(c\left(b+a\right)=ab\times2\)

= cb +ca = ab+ab

= ab - cb = ac-ab

\(=b\left(a-c\right)=a\left(c-b\right)\)

= \(\frac{a}{b}=\frac{a-c}{c-b}\)

6 tháng 1 2017

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\frac{1}{c}=\frac{1}{2a}+\frac{1}{2b}\)

\(\frac{1}{c}=\frac{a+b}{2ab}\)

\(2ab=c\left(a+b\right)\)

\(ab+ab=ac+bc\)

\(ab-bc=ac-ab\)

\(b\left(a-c\right)=a\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)